Approximation in Deterministic
and Stochastic Machine Scheduling

Wissenschaftliche Aussprache
May 06, 2021

M.Sc. Sven Joachim Jager
Fakultit IT — Mathematik und Naturwissenschaften, Technische Universitit Berlin
Vorsitzender: Prof. Dr. Yuri Suris

Gutachter: Prof. Dr. Martin Skutella
Prof. Dr. Marc Uetz



INTRODUCTION
[ Jele}

Scheduling on Identical Parallel Machines

Given: jobsj =1,...,n with processing times p; > 0 and weights w; > o, number of

machines m;

Task: schedule each job for p; time units on some machine so as to minimize the sum of

weighted completion times Y I w
g p j=1

]

>

Cy G CeCs time




INTRODUCTION
[ Jele}

Scheduling on Identical Parallel Machines

Given: jobsj =1,...,n with processing times p; > 0 and weights w; > o, number of
machines m;

Task: schedule each job for p; time units on some machine so as to minimize the sum of
. . . n
weighted completion times } ;°, w; - ;.

[

Cy G CeCs time
Complexity

e NP-hard for two machines (Bruno et al. 1974)

e strongly NP-hard for arbitrary number of machines (Lageweg, Lenstra 1977)
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Scheduling under Uncertainty

I. Adversarial models
o online job arrivals
o unknown processing times (non-clairvoyant scheduling)

Competitive analysis: compare to offline optimum

II. Stochastic models

o random processing times with known distributions

Minimize expected total weighted completion time
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I1. Stochastic Scheduling

WSEPT Rule Stochastic Scheduling on Single Stochastic Online Scheduling on
Machine with Release Dates Unrelated Machines
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Deterministic Scheduling



Main Results

WSPT Rule
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Weighted Shortest Processing Time First (WSPT) rule

Whenever a machine is free, start available job with maximum ratio w;/p; on it.

For a fixed number m of machines, what is the maximum possible approximation ratio of
the WSPT rule?
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WSPT Rule — Previous Work

Theorem (Kawaguchi, Kyan 1986)

For an arbitrary number of machines WSPT rule has tight approximation ratio # A 1.207.
e Worst case is attained if all jobs have w; = p;.
e In this case WSPT is list scheduling according to the input order.

e Worst case is attained when n, m — oo.

e There is a PTAS for scheduling jobs on an arbitrary number of identical
machines. (Skutella, Woeginger 2000)

e For any number m of machines there is an FPTAS for scheduling jobs on m identical
machines. (Sahni 1976)
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Reduction to Unit Smith Ratio

Lemma (Kawaguchi, Kyan 1986; Schwiegelshohn 2011)

On any number of machines the worst-case approximation vatio is attained when w; = p; for all j.
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Objective Function in Terms of Machine Loads (for w; = p;)

P1 one machine i:

Do 1 2 5
D biG= Z(ZP;’) +- 1

j—i j—i j—i
~——
=L;

m-machine schedule:

n m n
ZPJ'Ci=§ZL?+§ZPf
j=1 i=1 j=1

—

L, L,Ltime
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Reduction to Worst Case

WSPT schedule OPT schedule
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2_;bj decreases by 6 [ 2_;bj decreases by 6
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Reduction to Worst Case (Cont.)

> ; Li decreases by 6
2_;bj decreases by 6

___ 8 =
{
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Find worst £, x by calculation.

> ; Lf decreases by b
2_;bj decreases by 6




Approximation Ratio of the WSPT Rule on Fixed Number of Machines
Theorem

Onm > 2. machines the worst case for the WSPT rule occurs for

1. m/esmalljobswithw; =p; =¢ (¢ — 0),

| 2m—v2m*—17 : : o m
2. 0= - | jobs with w; = p; = -

In this case the approximation ratio is 1.21 &
1.2 |
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Main Results

WSPT Rule

= =

Theorem

Onm > 2.machines the worst case for the WSPT rule occurs for

1. m/esmalljobswithw; =p; =¢ (¢ — 0),

D = L@] jobs withw; = p; = - iz

2 am—0)—"

In this case the approximation ratio is 1.21 4
1.2 |
\/E'(ZWZ—E)—e 1.19 |

1+
2m 1.18

©o s 1 15 20 25
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Main Results

Scheduling with
Precedence Delays
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Theorem (Li 2020) Theorem

There is a 3.386-approximation algorithm for There is a 3.386-approximation algorithm for
scheduling jobs with precedence constraints. scheduling jobs with precedence delays.

e includes the setting with precedence
constraints and release dates.
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Main Results

Theorem

The Greedy-Assignment WSRPT
algorithm is a 4-competitive
deterministic online algorithm for
non-migratory preemptive
scheduling on unrelated
machines.

Online Non-Migratory
Preemptive Scheduling on
Unrelated Machines

R AT

e —

Previous results

e 7.216-competitive deterministic online
algorithm (Gupta et al. 2021+)

e 5.771-competitive randomized online algorithm (Hall
et al. 1997; Chakrabarti et al. 1996)

e With 1+ € speed augmentation, Greedy-Assignment
WSRPT algorithm is (2 + 2)-competitive for
> Ww;j(Cj — 7). (Anand etal. 2012)
~~ 8-competitive alg. for > _ w;C;. (Bansal, Pruhs 2004)
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Main Results

Non-Clairvoyant Online
Scheduling with
Precedence Delays

Theorem (Garg et al. 2019) Theorem

There is a 10-competitive deterministic A simplification of the algorithm of Garg et al. is
non-clairvoyant online algorithm for jobs with 8-competitive for jobs with precedence delays.
precedence constraints.
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Stochastic Scheduling on Unrelated Parallel Machines

Given: weights w; > o and distributions of independent random processing times p;; > 0
ofjobsj=1,...,nonmachinesi=1,...,m
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Task: find non-preemptive scheduling policy IT minimizing the expected sum of
weighted completion times.
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Given: weights w; > o and distributions of independent random processing times p;; > 0
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STOCHASTIC SCHEDULING

Task: find non-preemptive scheduling policy IT minimizing the expected sum of
weighted completion times.
e must be non-anticipative, i.e., a decision made at time t may only depend on the
information known at time ¢
o n
e functionR™ — R; (p;) — Z]-:1 w; - C]U (pij) must be measurable.

Alternative definitions of scheduling policy (cp. Méhring, Radermacher 1985)
A) function R™ — RZ  x [m]";

B) function from state space to action space.
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Approximative Policies

e We are interested in simple approximative policies.

e Some performance guarantees depend on an upper bound A on the squared

coefficients of variation oy
CV[PU]Z = li .
Elp,]
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Main Results

WSEPT Rule
<1+ Y2 (14 4) gD
I/\: I/\:
OPT  WSEPT OPT’  WSEPT'
+¢ < AOPT
+c¢ < AOPT
Theorem

The WSEPT rule has performance guarantee

-t . I < 1.
I 2:(14+4/2(1+4)) LAY AL
1+¢-(1+A4) IfA > 1

Kawaguchi, Kyan 1986

>
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Main Results

Stochastic Scheduling on Single
Machine with Release Dates

Prlp, > 1]
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Main Results

Stochastic Scheduling on Single
Machine with Release Dates

Prip; > {]

[

Virtual schedule

D

Theorem (Schulz 2008)

There are a (1+ max{ ¢, % (1+A)})-
competitive deterministic and a

(2 + A)-competitive randomized online 1.5 |Goemans et al. 2002
scheduling policy for identical machines.

2.5 &

Anderson, Potts 2004
2 ¢

1 t+ t+ t+
e on single machine (¢ + 1)-competitive o} 0.5 1 1.5

(deterministic) and 2-competitive
(randomized) (¢ + 1~ 2.618)

A

IS 4

e If Ais known in advance (semi-online),
these can be improved.
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Main Results

Stochastic Scheduling on Single
Machine with Release Dates
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Virtual schedule

D

Theorem (Mohring et al. 1999) 3

There is an efficient scheduling policy with 2.5 |
performance guarantee 3 for scheduling jobs with
precedence constraints and release dates on a
single machine.

2. ¢ Sitters, Yang 2018

1.5 |
1

IS 4
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Main Results

Stochastic Scheduling on Single
Machine with Release Dates

Prip; > {]

[

Virtual schedule

D

Theorem (Mohring et al. 1999) 3

There is an efficient scheduling policy with 2.5 ¢
performance guarantee 3 for scheduling jobs with
precedence constraints and release dates on a
single machine.

y
Skutella 2016
2. ¢ Sitters, Yang 2018
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IS 4
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Main Results

Stochastic Online Scheduling on
Unrelated Machines

== =
e ——

Virtual schedule
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Theorem (Gupta et al. 2021+) Theorem

Thereis a3.608 - h(A) - (2 + A)-competitive Thereisa (3 + +/5) - (2 + A)-competitive

deterministic online scheduling policy for deterministic and an (8 + 4A\)-competitive

unrelated machines, where randomized online scheduling policy for
unrelated machines.

e If Ais known in advance (semi-online),

\/Z ; < 1°
I’Z(A) = {1+ 2 lfA =5
these can be improved.

H—AAJF1 ifA > 1.
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Stochastic Online Scheduling on Unrelated Machines
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hakrabarti et al. 1996

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Jobs j arrive over time;

at the release date r; the weight wj and the distributions of all p;;, i € [m], are given;

ifj is scheduled on machine i, the outcome of p;; becomes known when j completes.

Competitive analysis: compare to optimal scheduling policy.
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Stochastic Online Scheduling on Unrelated Machines
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Jobs j arrive over time;

at the release date r; the weight wj and the distributions of all p;;, i € [m], are given;

ifj is scheduled on machine i, the outcome of p;; becomes known when j completes.

Competitive analysis: compare to optimal scheduling policy.
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Stochastic Online Scheduling on Unrelated Machines

Chakrabarti et al. 1996
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Jobs j arrive over time;

at the release date r; the weight wj and the distributions of all p;;, i € [m], are given;

ifj is scheduled on machine i, the outcome of p;; becomes known when j completes.

Competitive analysis: compare to optimal scheduling policy.
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o The mean busy time M; of job j is the
average of all times when it is being
processed.

e Whenjobjisreleased, assignittoa
machine i with minimum increase of

n
bij
Z w; - <Mj + *)
= z

in the virtual preemptive WSPT
schedule of deterministic counterparts
with pjj == E[p;].
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Online Scheduling Policies

o The mean busy time M; of job j is the
average of all times when it is being

_I_l I_l
processed. e

e Whenjobjisreleased, assignittoa ] T
machine i with minimum increase of | |

n
Dij
Z Wi <Mj T f) Virtual schedule
j=1

in the virtual preemptive WSPT |
schedule of deterministic counterparts

with p;; = Elp;].
’ ] I|I [1]

e On each machine, schedule the jobs by
single machine (semi-)online policy
from previous chapter.




Thank you!
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1 1
T
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Theorem
For o € [2,1] the WSPT rule has approximation ratio
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1+




ONLINE LIST MODEL
L

Open Problem: Online List Assignment Model

® jobs arrive one by one; must be assigned to machines immediately

e on each machine, assigned jobs are optimally sequenced (WSPT)

Min-increase algorithm

Assign each job to a machine minimizing the increase of the current objective value.

Known results:

e (2 —;L)-competitive (cp. e.g. Megow et al. 2006)

. . . . . . w; . .
e Ifjobs arrive in order of non-increasing or non-decreasing L then Min-increase
)

. .. .1 2
achieves competitive ratio %\/»

Conjecture (Stougie 2017)

Min-increase has competitive ratio HTﬁ
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Scheduling with Precedence Delays on Identical Machines

busy time p idletimeA T ¢

Consider partial schedule when the blue job has been assigned.

Chlue = 1+ A
For « € (0, ;] it holds that
I p 1 LP
< = Chlues A< o Chlue:

e o .
For o« = ; this gives a 4-approximation algorithm.
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e The blue job has to wait for the purple job (can be idle time).
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Bounding the Idle Time

time

Trace back why the blue job is not completed earlier.
e The blue job has to be processed (can be idle time).
e The blue job has to wait for the purple job (can be idle time).

e The purple job has to wait because before all machines are busy (cannot be idle time).

1
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Bounding the Expected Busy Time Lower bound on LP-completion time

>
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5 10 P time
blue

Forav € (o, 3] et = {j € N1 C¥(a) < CI2, }.

E
Claim: CIF_ > % : [p,g“)]

In the example CI-LP(%) < cpp forallj € N, whence J4 = N for all . Therefore,

1 p(N) 1 Elp(Ja)l
Cﬁiezg‘ m 2 om
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Non-Migratory Preemptive Scheduling on Unrelated Machines

Assume that all pj;, 7; € 27, and let T € Z be an upper bound on the makespan.

Variables: y;i, i € [m], j € [n], t € {rj,..., T — 1}, indicating how long job j is processed on
machine i during time slot (¢, + 1.

m T—1

(LP) min ZWJ ZZ(yl]t J’ut <t+ ))
m T—1 1“1 o
S. t. Z Lt _ 1 Ve n
prm—

Zyijt < 1 Viem,telo,...,T—1}

jr=>t

yig = o Viemljeh,te{r...,T—1}
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Dual LP

=
LP min ZWJ i l(yut yz]t (t-l— ))

i=1 t= p
m T—1
ZZJ’W =1 Vel
i=1 t=r; pu
J

Zyi]'t <1 Viem,te{o...,T—1}

jir >t

yig > o Viemljeh,teln...,T—1}

n m T—1
Dymx Y x-) Y v
j=1 i=1 t=0
. t 1 .
st U < wit+w,»( +/Z+1) Viem,jem, ter...,.T—1}
P pij 2
Py > o Vie ml,te{o...,T—1}
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Dual Solution

e Forj € [n]leti(j) be the machine to which j is assigned by the Greedy-Assignment
WSRPT algorithm.

e Fori € [m]andt € Z>, let U, be the set of jobs completed after time t on machine i in
the Greedy-Assignment WSRPT schedule.

o= % - cost(j — i(j)) forallj € [nl,

(Ui,zt)

Lb,-t::w S foralli € [ml], t € {o,..., T —1},
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Cost of Dual Solution
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(D) max 3 x; —2_ D> ¥
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Feasibility of Dual Solution
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Feasibility of Dual Solution

n m T—1
D) max 3 x-3 5 i

j=1 i=1 t=0

5 s U; Pyt
- cos (] l(])) < W( ,zt) +Wj'( +/z
2 pj 2 Pij
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Feasibility of Dual Solution

cost(j — i(j)) W(lii,u) tw (t +1/,
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Weighted Shortest Expected Processing Time First Rule

WSEPT rule
Whenever a machine is free, start available job with maximum ratio wj/E[p;] on it.

e WSEPT is optimal if

o there is only one machine (Rothkopf1966)
o alljobs have unit weight, and the processing times are pairwise stochastically

comparable (Weber et al. 1986)

e Even for unit-weight jobs WSEPT has no constant performance guarantee. (Cheung

et al. 2014; Im et al. 2015)

e The approximation ratio can be bounded in terms of

Var[p.]
A = max P .
]‘6{11'"1}1} E[Pl]z

(Mohring et al. 1999)




WSEPT RULE
(o] Jele}

Performance Guarantees for the WSEPT Rule




WSEPT RULE
(o] Jele}

Performance Guarantees for the WSEPT Rule




Proof of the Performance Guarantee

Idea: Consider random weights w]-’ = % - W
]



Proof of the Performance Guarantee

Idea: Consider random weights w]-’ = % - W
]

— in every realization the WSEPT rule schedules the jobs in non-increasing order of%.
]

Zw CWSEPT<1+\[ Z OPTp, _1+\[ Z COPT



Proof of the Performance Guarantee

Idea: Consider random weights w]-’ = % - W
]

— in every realization the WSEPT rule schedules the jobs in non-increasing order of%.
]
n

n n
! ~WSEPT 142 /  ~OPT(p,w’) 1++2 /' OPT
|2 wf- g < VR |3 e <RV E ]S wr o]
j=1

j=1 j=1




Proof of the Performance Guarantee

Idea: Consider random weights w]-’ = % - W
]

— in every realization the WSEPT rule schedules the jobs in non-increasing order of%.
]

n n n
! ~WSEPT 142 /  ~OPT(p,w’) 1++2 /' OPT
|2 w-qe| < V2 gy wf | < EOR g ]S w e
j=1

j=1 j=1

Lemma
For any stochastic scheduling policy T1 it holds that

{5 off ] £

Var[p




Proof of the Performance Guarantee

Idea: Consider random weights w]-’ = % - W
]

— in every realization the WSEPT rule schedules the jobs in non-increasing order of%.
]

n n
/'  ~WSEPT H'\/2 OPpr 1++2 /' ~OPT
E[E Wj'Cj ]g S [E ] }g 5 -E E w]-‘Cj .
=

=1

Lemma
For any stochastic scheduling policy T1 it holds that

{5 off ] £

Var[p

Proof
Elp,Cl'] = Elp;Sjl + Elp}] = Elp]] - (EIS]] + Elp;]) + Varlp;] = Elpj] - E[C]] + Var[p)]. O



Proof of the Performance Guarantee

Idea: Consider random weights w]-’ = % - W
]

— in every realization the WSEPT rule schedules the jobs in non-increasing order of%.
]

n n n
! ~WSEPT 142 /  ~OPT(p,w’) 1++2 /' OPT
|2 w-qe| < V2 gy wf | < EOR g ]S w e
j=1

j=1 j=1

Lemma
For any stochastic scheduling policy T1 it holds that

{5 off ] £

Var[p

::cgziwj~A-E[p}-}§AOPT
Proof
Elp,Cl'] = Elp;Sjl + Elp}] = Elp]] - (EIS]] + Elp;]) + Varlp;] = Elpj] - E[C]] + Var[p)]. O



WSEPT RULE
[e]e]e] ]

Proof of the Performance Guarantee (Cont.)

< 1+y/2
? = 3
I/—\I I/—\I
| | | |
OPT WSEPT OPT’ WSEPT’

+c

WSEPT



WSEPT RULE
[e]e]e] ]

Proof of the Performance Guarantee (Cont.)

< 1+y/2
? = 3
I///"__\\\\I I///"__\\\\I
| | | |
OPT WSEPT OPT’ WSEPT’

+c

WSEPT



WSEPT RULE
[e]e]e] ]

Proof of the Performance Guarantee (Cont.)

< 1+y/2
? = 3
I/—\I I/—\I
| | | |
OPT WSEPT OPT’ WSEPT’

+c

WSEPT = WSEPT' — ¢



WSEPT RULE
[e]e]e] ]

Proof of the Performance Guarantee (Cont.)

2 < 2
I/\I I/\I
| | | |
OPT WSEPT OPT’ WSEPT’
—+c
—+c
1 2
WSEPT = WSEPT' — ¢ < +2\[ -OPT' —¢



WSEPT RULE
[e]e]e] ]

Proof of the Performance Guarantee (Cont.)

’ < M
I/\I I/\I
| | | |
OPT WSEPT OPT’ WSEPT’
+c
+c
1 2 1 2
WSEPT = WSEPT' — ¢ < 2\[ -OPT' — ¢ = +Z\[ -(OPT +¢) —¢



WSEPT RULE
[e]e]e] ]

Proof of the Performance Guarantee (Cont.)

’ < M
I/\I I/\I
| | | |
OPT WSEPT OPT’ WSEPT’
+c
+c
1 2 1 2
WSEPT = WSEPT' — ¢ < 2\[ -OPT' — ¢ = +Z\[ -(OPT +¢) —¢
2—1
= OPT + \[Z - (OPT +¢)



WSEPT RULE
[e]e]e] ]

Proof of the Performance Guarantee (Cont.)

V21 12
<1+ Y= (1+4) <

I/\I I/\I

| | | |
OPT WSEPT OPT’ WSEPT’

+c
+c
1 2 1 2

WSEPT = WSEPT' — ¢ < 2\[ -OPT' — ¢ = +Z\[ -(OPT +¢) —¢

2—1 2—1

:OPT—F\[Z -(01>T+c)§(1+\[Z ~(1+A))~OPT

¢ < AOPT



R |7 | E[X wiG]
L

Analysis of Online Scheduling Policies for Unrelated Machines

+/5
< 3 . 5 E[Z;;lwi . C]glet]

Y wie (M}J~WSPT+ w)

j=1 2

optimal solution to (LPge)

feasible solution to dual of (LPg) E; [Z;’ZI w; - CI-OPT]

<1+ %
(Gupta et al. 2020)
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Analysis of Online Scheduling Policies for Unrelated Machines
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J=1 ]

2

optimal solution to (LPge)

feasible solution to dual of (LPg) E; [Z;’ZI w; - CI-OPT]

<1+ %
(Gupta et al. 2020)

optimal solution to (LPgcp)

deterministic online Y5 . 4. (1+ %) (3++/5)(2+A)
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(Gupta et al. 2020)

optimal solution to (LPgcp)

deterministic online Y5 . 4. (1+ %) (3++/5)(2+A)

2

randomized online 24 - (1 + %) =4-(24+A)
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R |7 | E[X wiG]
L

Analysis of Online Scheduling Policies for Unrelated Machines

E [Z?:I w; - CjGMUX]
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> i Wi - G
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optimal solution to (LPge)

feasible solution to dual of (LPg)

OPT

E [Z?:I wj - Ci ]
<1+ %

(Gupta et al. 2020)

optimal solution to (LPgcp)

2

deterministic online V5 Ly, (1 + ) (3++5)-(24+A4)

randomized online 24 - (1 + %) 4-(24+A)
semi-online flA)-4- (1+ %) :f( )-2-(2+A)
Guptaetal. 2021+  h(A) - 7.216 - (1+ %) =3.608-h(A) - (2+ A)
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