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Delay Management on a Path

Frankfurt(Main)Hbf Di, 29.08.23 ab 09:19 16 RE 30 (4154)
Kassel Hbf Di, 29.08.23 an11:33 7

Umsteigezeit 13 Min.

Kassel Hbf Di, 29.08.23 ab 11:46 11 RB 83 (24014)
Gottingen Di, 29.08.23 an12:455

Umsteigezeit 19 Min.

Gottingen Di, 29.08.23 ab 13:04 6 ME RE2 (82828)
Uelzen Di, 29.08.23 an 15:39 103

Umsteigezeit 22 Min.

Uelzen Di,29.08.23 ab 16:01 103  ME RE3 (82128)
Hamburg Hbf Di, 29.08.23 an 17:03 13A-C

Umsteigezeit 13 Min.

Hamburg Hbf (S-Bahn) Di,29.08.23 ab 17:16 1 S3

Hamburg Dammtor Di, 29.08.23 an17:181

RPTU
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> Forallie {1,...,m} the arrival time at node viy; in the disposition timetable will be

X =X 4 Ly + da,
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v

Foralli e {1,...,m} the arrival time at node v;; in the disposition timetable will be
X =X 4 Ly + da,

> IF T < xidep, then the transfer at v; is . Otherwise, it is

> For1<i < j< m+1the origin-destination pair (i, j) is if the transfers at all vy,
ke {i+1,...,j— 1}, are maintained. Otherwise, it is

> The objective function is

d
S we bt Y we

1<i<j<m-+1 1<i<j<m-+1
(i,j) maintained (i,j) dropped
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> Motivation: Passengers arrive by feeder trains that may be delayed.
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> Motivation: Passengers arrive by feeder trains that may be delayed.

> Each origin-destination pair has a given source delay. The planned trains do not get additional
delays.
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> Motivation: Passengers arrive by feeder trains that may be delayed.

> Each origin-destination pair has a given source delay. The planned trains do not get additional
delays.

> There are no slack times, i.e., if a train aj; waits for a train a;, then it will get exactly the same delay.
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> Motivation: Passengers arrive by feeder trains that may be delayed.

> Each origin-destination pair has a given source delay. The planned trains do not get additional
delays.

> There are no slack times, i.e., if a train aj; waits for a train a;, then it will get exactly the same delay.

> If all passengers have delay in {0, 1}, the problem can be solved in polynomial time.
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1 > 4 > 5 > 6
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2
15 ‘ 20 (+1) 31(+0)
24 (+1) L 17 (+1)

Motivation: Passengers arrive by feeder trains that may be delayed.

Each origin-destination pair has a given source delay. The planned trains do not get additional
delays.

There are no slack times, i.e., if a train a;1; waits for a train a;, then it will get exactly the same delay.
If all passengers have delay in {0, 1}, the problem can be solved in polynomial time.

If there are slack times, the problem becomes NP-hard.
Delay Management on a Path RPTlJ
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> The dynamic program can be generalized to out-trees.
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Main Result

Theorem

> The dynamic program can be generalized to out-trees.
> The hardness proof of Gatto et al. shows that the problem is hard for in-trees of the form

D G S S SN
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> For1<k < ¢ < mletzlk, /] be the smallest possible total delay of passengers with origin > k and
destination > £ under the condition that the transfers at stations k +1,...,¢ — 1 are maintained.
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For1< k < ¢ < mletzlk, £] be the smallest possible total delay of passengers with origin > k and
destination > £ under the condition that the transfers at stations k +1,...,¢ — 1 are maintained.

> Then z[1,1] is the optimal objective value.

> zlk,m+1 =0fork=1,...,m.

RPTU
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L, =13

1
L15
24

> For1<k < ¢ < mletzlk, /] be the smallest possible total delay of passengers with origin > k and
destination > £ under the condition that the transfers at stations k +1,...,¢ — 1 are maintained.

> Then z[1,1] is the optimal objective value.

> zlk,m+1 =0fork=1,...,m.
Z[0, 0] = Wg o1 - da, + 2[00+ 1]
—_—

dest. £+1 dest. >£+1
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For1< k < ¢ < mletzlk, £] be the smallest possible total delay of passengers with origin > k and
destination > £ under the condition that the transfers at stations k +1,...,¢ — 1 are maintained.
Then z[1, 1] is the optimal objective value.

zlk, m+ 1 =0fork=1,...,m.
z[, €] =Wy iy -da, + Z[0, £ +1] fore=1,...,m
——— ——

dest. £+1 dest. >£+1

don't wait at £ wait at £

4
z[k,E]:min{ > owiy T+ 264, Zwi7g+1-D[k,...,£]+z[k,£+1]} fort<k<¢<m,
—— ———

ksi<é<i origin >¢£ =k dest. >/4+1
origin <4 dest. £+1
where D[k, . .., £] is the delay of train ¢ if transfers are maintained at stations k +1,... ¢
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For1< k < ¢ < mletzlk, £] be the smallest possible total delay of passengers with origin > k and
destination > £ under the condition that the transfers at stations k +1,...,¢ — 1 are maintained.
Then z[1, 1] is the optimal objective value.
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For1< k < ¢ < mletzlk, £] be the smallest possible total delay of passengers with origin > k and
destination > £ under the condition that the transfers at stations k +1,...,¢ — 1 are maintained.
Then z[1, 1] is the optimal objective value.

zlk, m+ 1 =0fork=1,....,m
z[, €] =Wy iy -da, + Z[0, £ +1] fore=1,...,m
——— ——

dest. £+1 dest. >£+1
don't wait at £ wait at £

0
z[k, £] = min wii-T + z[(, 0 Wi g1 DIk, ..., ¢ +zk,(<’+1} fort<k </£<m,
.4 {Z ST L Y wen Dl ]+ 2k 4]

&L_/ origin ZZ = dest. >(+1
origin <4 dest. £+1
where D[k, . .., £] is the delay of train ¢ if transfers are maintained at stationsk +1,...,¢
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> Approximation algorithms for more complicated networks
> Fixed-parameter tractability
> Online delay management
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> Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays
from {0, 1}.
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> Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays
from {0, 1}.

> The delays of all passengers boarding at station v; become known when the train arrives at v;.

> In this case, a solution specifies a single station where the train waits and from which it keeps
the delay.

> For this setting they give a 2-competitive online algorithm.
> Krumke, Thielen, and Zeck gave a lower bound of 1.837.

What about our setting?
> Arbitrary delays
> Slack times
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When does the delay become known?
A The delay of a train a; becomes known when the train departs.
B The delay of a train a; becomes known when the train arrives.
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When does the delay become known?
A The delay of a train a; becomes known when the train departs.
B The delay of a train a; becomes known when the train arrives.

T=2

> Totaldelay: (¢ +1) -2
> Without waiting: ¢ -2 + 1
> Competitive ratio: v/5 — 1~ 1.236.
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When does the delay become known?
A The delay of a train a; becomes known when the train departs.
B The delay of a train a; becomes known when the train arrives.

T=2 g
X5 =1+x

Lo, =1

> 3

2
d1:X+(S :
Ls (N

> Totaldelay: e-2+1-x,

> Waiting until arrival: (14 ¢) - (x + 6),
> Without waiting: € - 2,

> Competitive ratio: > 1+ = 29,9

2 Delay Management on a Path RPTU



1. The delay management problem on out-trees with source delays on the arcs can be solved in
polynomial time by a dynamic program (while it is NP-hard for in-trees).
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1. The delay management problem on out-trees with source delays on the arcs can be solved in
polynomial time by a dynamic program (while it is NP-hard for in-trees).

2. There are different interesting online models (with simple lower bounds).
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