Delay Management on a Path

Sven Jäger

OR 2023 August 31, 2023, Hamburg

Motivation

Frankfurt(Main)Hbf	Di, 29.08.23	ab 09:19 16	RE 30 (4154)
Kassel Hbf	Di, 29.08.23	an 11:33 7	

Umsteigezeit 13 Min.			
Kassel Hbf	Di, 29.08.23	ab 11:46 11	RB 83 (24014)
Göttingen	Di, 29.08.23	an 12:45 5	

Umsteigezeit 19 Min.			
Göttingen	Di, 29.08.23	ab 13:04 6	ME RE2 (82828)
Uelzen	Di, 29.08.23	an 15:39 103	
Umsteigezeit 22 Min.			
Uelzen	Di, 29.08.23	ab 16:01 103	ME RE3 (82128)
Hamburg Hbf	Di, 29.08.23	an 17:03 13A-C	
Umsteigezeit 13 Min.			
Hamburg Hbf (S-Bahn)	Di, 29.08.23	ab 17:16 1	S 3
Hamburg Dammtor	Di, 29.08.23	an 17:18 1	

Given: \rightarrow Directed path (V, A) on nodes V = {v₁, ..., v_{m+1}} with arcs a_i = (v_i, v_{i+1})

 $\textbf{Given:} \rightarrow \text{ Directed path (V, A) on nodes } V = \{v_1, \ldots, v_{m+1}\} \text{ with arcs } a_i = (v_i, v_{i+1})$

> planned departure times π_i^{dep} for i = 1, ..., m

Given: Directed path (V, A) on nodes $V = \{v_1, \dots, v_{m+1}\}$ with arcs $a_i = (v_i, v_{i+1})$

- > planned departure times π_i^{dep} for i = 1, ..., m
- ightarrow normal driving durations $L_a \ge 0$ of arcs $a \in A$,

Given: \rightarrow Directed path (V, A) on nodes V = {v₁, ..., v_{m+1}} with arcs a_i = (v_i, v_{i+1})

- > planned departure times π_i^{dep} for i = 1, ..., m
- ightarrow normal driving durations $L_a \ge 0$ of arcs $a \in A$,
- $\,\,\,$ source delays d_a \geq 0 on the arcs a \in A,

Given: Directed path (V, A) on nodes $V = \{v_1, \dots, v_{m+1}\}$ with arcs $a_i = (v_i, v_{i+1})$

- > planned departure times π_i^{dep} for i = 1, ..., m
- ightarrow normal driving durations $L_a \ge 0$ of arcs $a \in A$,
- \rightarrow source delays d_a \geq 0 on the arcs a \in A,
- $\, \cdot \,$ numbers $w_{i,j} \geq 0$ of passengers traveling from v_i to v_j for $1 \leq i < j \leq m+1,$

Given: Directed path (V, A) on nodes $V = \{v_1, \dots, v_{m+1}\}$ with arcs $a_i = (v_i, v_{i+1})$

- > planned departure times π_i^{dep} for i = 1, ..., m
- $\,\,\,$ normal driving durations $L_a \geq 0$ of arcs $a \in A$,
- \rightarrow source delays d_a \geq 0 on the arcs a \in A,
- $\, \cdot \,$ numbers $w_{i,j} \geq 0$ of passengers traveling from v_i to v_j for $1 \leq i < j \leq m+1,$
- > Delay T incurred by missing a connection (e.g. period length).

Given: \rightarrow Directed path (V, A) on nodes V = {v₁, ..., v_{m+1}} with arcs a_i = (v_i, v_{i+1})

- > planned departure times π_i^{dep} for i = 1, ..., m
- $\,\,\,$ normal driving durations $L_a \geq 0$ of arcs $a \in A$,
- ightarrow source delays $d_a \ge 0$ on the arcs $a \in A$,
- $\, > \,$ numbers $w_{i,j} \geq 0$ of passengers traveling from v_i to v_j for $1 \leq i < j \leq m+1,$
- > Delay T incurred by missing a connection (e.g. period length).

Task: Find new departure times $x_i^{dep} \ge \pi_i^{dep}$ for i = 1, ..., m such that the total delay of all passengers is minimized.

> For all $i \in \{1, \ldots, m\}$ the arrival time at node v_{i+1} in the disposition timetable will be

$$x_{i+1}^{arr} = x_i^{dep} + L_{a_i} + d_{a_i}. \label{eq:constraint}$$

> For all $i \in \{1, \ldots, m\}$ the arrival time at node v_{i+1} in the disposition timetable will be

$$x_{i+1}^{arr} = x_i^{dep} + L_{a_i} + d_{a_i}. \label{eq:constraint}$$

> If $x_i^{arr} \le x_i^{dep}$, then the transfer at v_i is **maintained**. Otherwise, it is **missed**.

> For all $i \in \{1, \ldots, m\}$ the arrival time at node v_{i+1} in the disposition timetable will be

$$x_{i+1}^{arr} = x_i^{dep} + L_{a_i} + d_{a_i}. \label{eq:constraint}$$

- > If $x_i^{arr} \le x_i^{dep}$, then the transfer at v_i is **maintained**. Otherwise, it is **missed**.
- For 1 ≤ i < j ≤ m + 1 the origin-destination pair (i, j) is maintained if the transfers at all v_k, k ∈ {i + 1,..., j − 1}, are maintained. Otherwise, it is dropped.

> For all $i \in \{1, \ldots, m\}$ the arrival time at node v_{i+1} in the disposition timetable will be

$$x_{i+1}^{arr} = x_i^{dep} + L_{a_i} + d_{a_i}. \label{eq:constraint}$$

- > If $x_i^{arr} \leq x_i^{dep}$, then the transfer at v_i is **maintained**. Otherwise, it is **missed**.
- For 1 ≤ i < j ≤ m + 1 the origin-destination pair (i, j) is maintained if the transfers at all v_k, k ∈ {i + 1,..., j − 1}, are maintained. Otherwise, it is dropped.
- > The objective function is

$$\sum_{\substack{1 \leq i < j \leq m+1 \\ (i,j) \text{ maintained}}} w_{i,j} \cdot (x_j^{arr} - \pi_{j-1}^{dep} - L_{a_{j-1}}) + \sum_{\substack{1 \leq i < j \leq m+1 \\ (i,j) \text{ dropped}}} w_{i,j} \cdot T.$$

Gatto et al., 2004

> Motivation: Passengers arrive by feeder trains that may be delayed.

Gatto et al., 2004

- > Motivation: Passengers arrive by feeder trains that may be delayed.
- Each origin-destination pair has a given source delay. The planned trains do not get additional delays.

Gatto et al., 2004

- > Motivation: Passengers arrive by feeder trains that may be delayed.
- Each origin-destination pair has a given source delay. The planned trains do not get additional delays.
- > There are no slack times, i.e., if a train a_{i+1} waits for a train a_i , then it will get exactly the same delay.

Gatto et al., 2004

- > Motivation: Passengers arrive by feeder trains that may be delayed.
- Each origin-destination pair has a given source delay. The planned trains do not get additional delays.
- > There are no slack times, i.e., if a train a_{i+1} waits for a train a_i, then it will get exactly the same delay.
- > If all passengers have delay in {0,1}, the problem can be solved in polynomial time.

Gatto et al., 2004

- > Motivation: Passengers arrive by feeder trains that may be delayed.
- Each origin-destination pair has a given source delay. The planned trains do not get additional delays.
- > There are no slack times, i.e., if a train a_{i+1} waits for a train a_i, then it will get exactly the same delay.
- > If all passengers have delay in $\{0, 1\}$, the problem can be solved in polynomial time.

Gatto et al., 2005

> If there are slack times, the problem becomes NP-hard.

Main Result

Theorem

The delay management problem on a line with delays occurring on the driving arcs can be solved in time $O(m^2)$, even if there are arbitrary delays and slack times at the transfer stations.

Main Result

Theorem

The delay management problem on a line with delays occurring on the driving arcs can be solved in time $O(m^2)$, even if there are arbitrary delays and slack times at the transfer stations.

> The dynamic program can be generalized to out-trees.

Main Result

Theorem

The delay management problem on a line with delays occurring on the driving arcs can be solved in time $O(m^2)$, even if there are arbitrary delays and slack times at the transfer stations.

- > The dynamic program can be generalized to out-trees.
- > The hardness proof of Gatto et al. shows that the problem is hard for in-trees of the form

> For $1 \le k \le \ell \le m$ let $z[k, \ell]$ be the smallest possible total delay of passengers with origin $\ge k$ and destination $> \ell$ under the condition that the transfers at stations $k + 1, \dots, \ell - 1$ are maintained.

- For 1 ≤ k ≤ ℓ ≤ m let z[k, ℓ] be the smallest possible total delay of passengers with origin ≥ k and destination > ℓ under the condition that the transfers at stations k + 1, ..., ℓ − 1 are maintained.
- > Then z[1, 1] is the optimal objective value.

- For 1 ≤ k ≤ ℓ ≤ m let z[k, ℓ] be the smallest possible total delay of passengers with origin ≥ k and destination > ℓ under the condition that the transfers at stations k + 1,..., ℓ − 1 are maintained.
 Then z[1, 1] is the optimal objective value.
- Then z[i, i] is the optimal objective value
- > z[k, m + 1] = 0 for $k = 1, \dots, m$.

>
$$z[k, m + 1] = 0$$
 for $k = 1, ..., m$.

$$z[\ell,\ell] = \underbrace{w_{\ell,\ell+1} \cdot d_{a_\ell}}_{\text{dest. } \ell+1} + \underbrace{z[\ell,\ell+1]}_{\text{dest. } > \ell+1}$$

for
$$\ell = 1, \ldots, m$$

$$\begin{aligned} \mathbf{P} \ z[k,m+1] &= 0 \ \text{for} \ k = 1, \dots, m, \\ z[\ell,\ell] &= \underbrace{w_{\ell,\ell+1} \cdot d_{a_\ell}}_{\text{dest.} \ell+1} + \underbrace{z[\ell,\ell+1]}_{\text{dest.} > \ell+1} & \text{for} \ \ell = 1, \dots, m \\ z[k,\ell] &= \min \left\{ \underbrace{\sum_{\substack{k \leq i < \ell < j \\ \text{origin} < \ell}} w_{i,j} \cdot T + \underbrace{z[\ell,\ell]}_{\text{origin} \geq \ell}, \quad \underbrace{\sum_{\substack{i=k \\ \text{dest.} \ell+1}}^{\ell} w_{i,\ell+1} \cdot D[k, \dots,\ell]}_{\text{dest.} > \ell+1} + \underbrace{z[k,\ell+1]}_{\text{dest.} > \ell+1} \right\} & \text{for} \ 1 \leq k < \ell \leq m, \end{aligned}$$

where $D[k, \dots, \ell]$ is the delay of train ℓ if transfers are maintained at stations $k + 1, \dots, \ell$.

$$\begin{array}{l} \textbf{P} \ z[k,m+1] = 0 \ \text{for} \ k = 1, \ldots, m. \\ z[\ell,\ell] = \underbrace{w_{\ell,\ell+1} \cdot d_{a_\ell}}_{\text{dest.} \ \ell+1} + \underbrace{z[\ell,\ell+1]}_{\text{dest.} \ >\ell+1} & \text{for} \ \ell = 1, \ldots, m \\ \end{array} \\ z[k,\ell] = \min \left\{ \underbrace{\sum_{\substack{k \leq i < \ell < j \\ \text{origin} \ < \ell}} w_{i,j} \cdot T + \underbrace{z[\ell,\ell]}_{\text{origin} \ \geq \ell}, \quad \underbrace{\sum_{\substack{i = k \\ \text{dest.} \ \ell+1}}^{\ell} w_{i,\ell+1} \cdot D[k, \ldots,\ell]}_{\text{dest.} \ >\ell+1} + \underbrace{z[k,\ell+1]}_{\text{dest.} \ >\ell+1} \right\} & \text{for} \ 1 \leq k < \ell \leq m, \end{array}$$

where $D[k, \dots, \ell]$ is the delay of train ℓ if transfers are maintained at stations $k + 1, \dots, \ell$.

$$\begin{array}{l} \textbf{P} \ z[k,m+1] = 0 \ \text{for} \ k = 1, \ldots, m. \\ z[\ell,\ell] = \underbrace{w_{\ell,\ell+1} \cdot d_{a_\ell}}_{\text{dest.} \ \ell+1} + \underbrace{z[\ell,\ell+1]}_{\text{dest.} \ >\ell+1} & \text{for} \ \ell = 1, \ldots, m \\ \end{array} \\ z[k,\ell] = \min \left\{ \underbrace{\sum_{\substack{k \leq i < \ell < j \\ \text{origin} \ < \ell}} w_{i,j} \cdot T + \underbrace{z[\ell,\ell]}_{\text{origin} \ \geq \ell}, \quad \underbrace{\sum_{\substack{i = k \\ \text{dest.} \ \ell+1}}^{\ell} w_{i,\ell+1} \cdot D[k, \ldots,\ell]}_{\text{dest.} \ >\ell+1} + \underbrace{z[k,\ell+1]}_{\text{dest.} \ >\ell+1} \right\} & \text{for} \ 1 \leq k < \ell \leq m, \end{array}$$

where $D[k, \dots, \ell]$ is the delay of train ℓ if transfers are maintained at stations $k + 1, \dots, \ell$.

$$\begin{aligned} \mathbf{P} \ z[k,m+1] &= 0 \ \text{for} \ k = 1, \dots, m, \\ z[\ell,\ell] &= \underbrace{w_{\ell,\ell+1} \cdot d_{a_\ell}}_{\text{dest.} \ell+1} + \underbrace{z[\ell,\ell+1]}_{\text{dest.} > \ell+1} & \text{for} \ \ell = 1, \dots, m \\ z[k,\ell] &= \min \left\{ \underbrace{\sum_{\substack{k \leq i < \ell < j \\ \text{origin} < \ell}} w_{i,j} \cdot T + \underbrace{z[\ell,\ell]}_{\text{origin} \geq \ell}, \quad \underbrace{\sum_{\substack{i=k \\ \text{dest.} \ell+1}}^{\ell} w_{i,\ell+1} \cdot D[k, \dots,\ell]}_{\text{dest.} > \ell+1} + \underbrace{z[k,\ell+1]}_{\text{dest.} > \ell+1} \right\} & \text{for} \ 1 \leq k < \ell \leq m, \end{aligned}$$

where $D[k, \dots, \ell]$ is the delay of train ℓ if transfers are maintained at stations $k + 1, \dots, \ell$.

	1	2	3	4	5	6
1						0
2						0
3						0
4					0	0
5					0	0

	1	2	3	4	5	6
1						0
2						0
3					24	0
4					0	0
5					0	0

- Don't wait at 5: $4 \cdot 6 + 0 = 24$
- > Wait at 5: $35 \cdot 1 + 0 = 35$

	1	2	3	4	5	6
1						0
2					24	0
3					24	0
4					0	0
5					0	0

- > Don't wait at 5: $4 \cdot 6 + 0 = 24$
- > Wait at 5: $35 \cdot 2 + 0 = 70$

T = 6

	1	2	3	4	5	6
1					118	0
2					24	0
3					24	0
4					0	0
5					0	0

 Don't wait at 5: 	$28 \cdot 6 + 0 = 168$

• Wait at 5: $59 \cdot 2 + 0 = 118$

	1	2	3	4	5	6
1					118	0
2					24	0
3					24	0
4				0	0	0
5					0	0

	1	2	3	4	5	6
1					118	0
2					24	0
3				24	24	0
4				0	0	0
5					0	0

> Don't wait at 4:	$4 \cdot 6 + 0 = 24$		
> Wait at 4:	$20 \cdot 2 + 24 = 64$		

	1	2	3	4	5	6
1					118	0
2				126	24	0
3				24	24	0
4				0	0	0
5					0	0

 Don't wait at 4: 	$21 \cdot 6 + 0 = 126$
> Wait at 4:	$37 \cdot 3 + 24 = 135$

	1	2	3	4	5	6
1				229	118	0
2				126	24	0
3				24	24	0
4				0	0	0
5					0	0

> Don't wait at 4:	$45 \cdot 6 + 0 = 270$
> Wait at 4:	$37 \cdot 3 + 118 = 229$

	1	2	3	4	5	6
1				229	118	0
2				126	24	0
3			24	24	24	0
4				0	0	0
5					0	0

T = 6

	1	2	3	4	5	6
1				229	118	0
2			126	126	24	0
3			24	24	24	0
4				0	0	0
5					0	0

> Don't wait at 3:	$17 \cdot 6 + 24 = 126$

 $0 \cdot 4 + 126 = 126$

	1	2	3	4	5	6
1			229	229	118	0
2			126	126	24	0
3			24	24	24	0
4				0	0	0
5					0	0

 Don't wait at 3: 	$41 \cdot 6 + 24 = 270$
Wait at 3:	$0 \cdot 4 + 229 = 229$

T = 6

	1	2	3	4	5	6
1		244	229	229	118	0
2		126	126	126	24	0
3			24	24	24	0
4				0	0	0
5					0	0

- > Don't wait at 2: $39 \cdot 6 + 126 = 360$
- > Wait at 2:

 $15 \cdot 1 + 229 = 244$

Possible Future Work

- > Approximation algorithms for more complicated networks
- Fixed-parameter tractability
- > Online delay management

Previous Work

 Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from {0,1}.

- Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from {0,1}.
- > The delays of all passengers boarding at station v_i become known when the train arrives at v_i .

- Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from {0,1}.
- > The delays of all passengers boarding at station v_i become known when the train arrives at v_i.
- > In this case, a solution specifies a single station where the train waits and from which it keeps the delay.

- Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from {0,1}.
- > The delays of all passengers boarding at station v_i become known when the train arrives at v_i.
- > In this case, a solution specifies a single station where the train waits and from which it keeps the delay.
- > For this setting they give a 2-competitive online algorithm.

- Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from {0,1}.
- > The delays of all passengers boarding at station v_i become known when the train arrives at v_i.
- > In this case, a solution specifies a single station where the train waits and from which it keeps the delay.
- > For this setting they give a 2-competitive online algorithm.
- > Krumke, Thielen, and Zeck gave a lower bound of 1.837.

Previous Work

- Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from {0,1}.
- > The delays of all passengers boarding at station v_i become known when the train arrives at v_i.
- > In this case, a solution specifies a single station where the train waits and from which it keeps the delay.
- > For this setting they give a 2-competitive online algorithm.
- > Krumke, Thielen, and Zeck gave a lower bound of 1.837.

What about our setting?

- Arbitrary delays
- Slack times

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

Example (A)

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

Example (A)

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

Example (A)

- > Total delay: $(\phi + 1) \cdot 2$
- Without waiting: $\phi \cdot 2 + 1$
- Competitive ratio: $\sqrt{5} 1 \approx 1.236$.

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

Example (A)

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

Example (A)

- > Total delay: $\phi \cdot 2$
- > With waiting: $\phi + 1$
- Competitive ratio: $\sqrt{5} 1 \approx 1.236$.

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

Example (B)

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

Example (B)

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

Example (B)

When does the delay become known?

- **A** The delay of a train a_i becomes known when the train departs.
- **B** The delay of a train a_i becomes known when the train arrives.

Example (B)

- > Total delay: $\varepsilon \cdot 2 + 1 \cdot x$,
- > Waiting until arrival: $(1 + \varepsilon) \cdot (x + \delta)$,
- > Without waiting: $\varepsilon \cdot 2$,
- Competitive ratio: $\geq 1 + \frac{1}{1+\varepsilon} \xrightarrow{\varepsilon \to 0} 2$.

1. The delay management problem on out-trees with source delays on the arcs can be solved in polynomial time by a dynamic program (while it is NP-hard for in-trees).

Summary

- **1.** The delay management problem on out-trees with source delays on the arcs can be solved in polynomial time by a dynamic program (while it is NP-hard for in-trees).
- 2. There are different interesting online models (with simple lower bounds).

Thank you!

References

- > M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer: Railway delay management: Exploring the algorithmic complexity. SWAT 2004
- > M. Gatto, R. Jacob, L. Peeters, and P. Widmayer: Online delay management on a single train line. Dagstuhl Workshp Railway Optimization 2004
- > M. Gatto, R. Jacob, L. Peeters, and A. Schöbel: The computational complexity of delay management. WG 2005
- 14 Delay Management on a Path