Delay Management on a Path

OR 2023
R

August 31, 2023, Hamburg

Frankfurt(Main)Hbf	Di, 29.08.23	ab 09:19 16	RE $30(4154)$
Kassel Hbf	Di, 29.08.23	an $11: 337$	

Umsteigezeit 19 Min .	Di, 29.08.23	ab 13:04 6	ME RE2 (82828)	
Göttingen	Di, 29.08.23	an $15: 39103$		
Uelzen				

Umsteigezeit 13 Min.			
Hamburg Hbf (S-Bahn)	Di, 29.08.23	ab 17:16 1	S 3
Hamburg Dammtor	Di, 29.08.23	an 17:18 1	

The Problem

The Problem

The Problem

Given: \quad Directed path (V, A) on nodes $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}+1}\right\}$ with arcs $\mathrm{a}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$

The Problem

Given: \quad Directed path (V, A) on nodes $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}+1}\right\}$ with arcs $\mathrm{a}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ planned departure times $\pi_{\mathrm{i}}^{\text {dep }}$ for $\mathrm{i}=1, \ldots$, m

The Problem

Given: \quad Directed path (V, A) on nodes $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}+1}\right\}$ with arcs $\mathrm{a}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$
, planned departure times $\pi_{\mathrm{i}}^{\text {dep }}$ for $\mathrm{i}=1, \ldots, \mathrm{~m}$
(normal driving durations $\mathrm{L}_{\mathrm{a}} \geq 0$ of arcs $\mathrm{a} \in \mathrm{A}$,

The Problem

Given: \quad Directed path (V, A) on nodes $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}+1}\right\}$ with arcs $\mathrm{a}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$
, planned departure times $\pi_{\mathrm{i}}^{\text {dep }}$ for $\mathrm{i}=1, \ldots, \mathrm{~m}$
, normal driving durations $\mathrm{L}_{\mathrm{a}} \geq 0$ of arcs $a \in A$, source delays $\mathrm{d}_{\mathrm{a}} \geq 0$ on the arcs $a \in A$,

The Problem

Given: \quad Directed path (V, A) on nodes $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}+1}\right\}$ with arcs $\mathrm{a}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$
, planned departure times $\pi_{\mathrm{i}}^{\text {dep }}$ for $\mathrm{i}=1, \ldots, \mathrm{~m}$
, normal driving durations $\mathrm{L}_{\mathrm{a}} \geq 0$ of arcs $a \in \mathrm{~A}$,
, source delays $d_{a} \geq 0$ on the arcs $a \in A$,
, numbers $w_{i, j} \geq 0$ of passengers traveling from v_{i} to v_{j} for $1 \leq i<j \leq m+1$,

The Problem

Given: ~ Directed path (V, A) on nodes $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}+1}\right\}$ with arcs $\mathrm{a}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$
, planned departure times $\pi_{i}^{\text {dep }}$ for $i=1, \ldots, m$
, normal driving durations $\mathrm{L}_{\mathrm{a}} \geq 0$ of arcs $\mathrm{a} \in \mathrm{A}$,
, source delays $d_{a} \geq 0$ on the arcs $a \in A$,
, numbers $w_{i, j} \geq 0$ of passengers traveling from v_{i} to v_{j} for $1 \leq i<j \leq m+1$,
, Delay T incurred by missing a connection (e.g. period length).

The Problem

Given: \quad Directed path (V, A) on nodes $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}+1}\right\}$ with arcs $\mathrm{a}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$
planned departure times $\pi_{i}^{\text {dep }}$ for $i=1, \ldots, m$
(normal driving durations $\mathrm{L}_{\mathrm{a}} \geq 0$ of arcs $a \in \mathrm{~A}$,
, source delays $d_{a} \geq 0$ on the arcs $a \in A$,
(numbers $w_{i, j} \geq 0$ of passengers traveling from v_{i} to v_{j} for $1 \leq i<j \leq m+1$,
, Delay T incurred by missing a connection (e.g. period length).
Task: Find new departure times $x_{i}^{\text {dep }} \geq \pi_{i}^{\text {dep }}$ for $i=1, \ldots, m$ such that the total delay of all passengers is minimized.

Assumptions

> For all $i \in\{1, \ldots, m\}$ the arrival time at node v_{i+1} in the disposition timetable will be

$$
\mathrm{x}_{\mathrm{i}+1}^{\mathrm{arr}}=\mathrm{x}_{\mathrm{i}}^{\mathrm{dep}}+\mathrm{L}_{\mathrm{a}_{\mathrm{i}}}+\mathrm{d}_{\mathrm{a}_{\mathrm{i}}} .
$$

Assumptions

> For all $i \in\{1, \ldots, m\}$ the arrival time at node v_{i+1} in the disposition timetable will be

$$
x_{i+1}^{\text {arr }}=x_{i}^{\text {dep }}+L_{a_{i}}+d_{\mathrm{a}_{\mathrm{i}}} .
$$

, If $x_{i}^{\text {arr }} \leq x_{i}^{\text {dep }}$, then the transfer at v_{i} is maintained. Otherwise, it is missed.

Assumptions

> For all $i \in\{1, \ldots, m\}$ the arrival time at node v_{i+1} in the disposition timetable will be

$$
x_{i+1}^{\text {arr }}=x_{i}^{\text {dep }}+L_{a_{i}}+d_{\mathrm{a}_{\mathrm{i}}} .
$$

, If $x_{i}^{\text {arr }} \leq x_{i}^{\text {dep }}$, then the transfer at v_{i} is maintained. Otherwise, it is missed.
, For $1 \leq i<j \leq m+1$ the origin-destination pair (i, j) is maintained if the transfers at all v_{k}, $\mathrm{k} \in\{\mathrm{i}+1, \ldots, \mathrm{j}-1\}$, are maintained. Otherwise, it is dropped.

Assumptions

> For all $i \in\{1, \ldots, m\}$ the arrival time at node v_{i+1} in the disposition timetable will be

$$
x_{i+1}^{\text {arr }}=x_{i}^{\text {dep }}+L_{a_{i}}+d_{\mathrm{a}_{\mathrm{i}}} .
$$

, If $x_{i}^{\text {arr }} \leq x_{i}^{\text {dep }}$, then the transfer at v_{i} is maintained. Otherwise, it is missed.
, For $1 \leq i<j \leq m+1$ the origin-destination pair (i, j) is maintained if the transfers at all v_{k}, $k \in\{i+1, \ldots, j-1\}$, are maintained. Otherwise, it is dropped.
, The objective function is

$$
\sum_{\substack{1 \leq i<j \leq m+1 \\(i, j)}} w_{i, j} \cdot\left(x_{j}^{\text {arr }}-\pi_{j-1}^{\text {dep }}-L_{a_{j-1}}\right)+\sum_{\substack{1 \leq i<j \leq m+1 \\(i, j) \text { dropped }}} w_{i, j} \cdot T .
$$

Related Work

Gatto et al., 2004

, Motivation: Passengers arrive by feeder trains that may be delayed.

Related Work

Gatto et al., 2004

, Motivation: Passengers arrive by feeder trains that may be delayed.
, Each origin-destination pair has a given source delay. The planned trains do not get additional delays.

Related Work

Gatto et al., 2004

, Motivation: Passengers arrive by feeder trains that may be delayed.
, Each origin-destination pair has a given source delay. The planned trains do not get additional delays.
, There are no slack times, i.e., if a train a_{i+1} waits for a train a_{i}, then it will get exactly the same delay.

Related Work

Gatto et al., 2004

, Motivation: Passengers arrive by feeder trains that may be delayed.
, Each origin-destination pair has a given source delay. The planned trains do not get additional delays.
, There are no slack times, i.e., if a train $\mathrm{a}_{\mathrm{i}+1}$ waits for a train a_{i}, then it will get exactly the same delay.
, If all passengers have delay in $\{0,1\}$, the problem can be solved in polynomial time.

Related Work

Gatto et al., 2004

, Motivation: Passengers arrive by feeder trains that may be delayed.
, Each origin-destination pair has a given source delay. The planned trains do not get additional delays.
, There are no slack times, i.e., if a train $\mathrm{a}_{\mathrm{i}+1}$ waits for a train a_{i}, then it will get exactly the same delay.
, If all passengers have delay in $\{0,1\}$, the problem can be solved in polynomial time.

Gatto et al., 2005

, If there are slack times, the problem becomes NP-hard.

Main Result

Theorem

The delay management problem on a line with delays occurring on the driving arcs can be solved in time $\mathrm{O}\left(\mathrm{m}^{2}\right)$, even if there are arbitrary delays and slack times at the transfer stations.

Main Result

Theorem

The delay management problem on a line with delays occurring on the driving arcs can be solved in time $\mathrm{O}\left(\mathrm{m}^{2}\right)$, even if there are arbitrary delays and slack times at the transfer stations.
, The dynamic program can be generalized to out-trees.

Main Result

Theorem

The delay management problem on a line with delays occurring on the driving arcs can be solved in time $\mathrm{O}\left(\mathrm{m}^{2}\right)$, even if there are arbitrary delays and slack times at the transfer stations.
, The dynamic program can be generalized to out-trees.
, The hardness proof of Gatto et al. shows that the problem is hard for in-trees of the form

, For $1 \leq k \leq \ell \leq m$ let $z[k, \ell]$ be the smallest possible total delay of passengers with origin $\geq k$ and destination $>\ell$ under the condition that the transfers at stations $k+1, \ldots, \ell-1$ are maintained.

, For $1 \leq \mathrm{k} \leq \ell \leq \mathrm{m}$ let $\mathrm{z}[\mathrm{k}, \ell]$ be the smallest possible total delay of passengers with origin $\geq \mathrm{k}$ and destination $>\ell$ under the condition that the transfers at stations $k+1, \ldots, \ell-1$ are maintained.
, Then $\mathrm{z}[1,1]$ is the optimal objective value.

, For $1 \leq \mathrm{k} \leq \ell \leq \mathrm{m}$ let $\mathrm{z}[\mathrm{k}, \ell]$ be the smallest possible total delay of passengers with origin $\geq \mathrm{k}$ and destination $>\ell$ under the condition that the transfers at stations $k+1, \ldots, \ell-1$ are maintained.
, Then $\mathrm{z}[1,1]$ is the optimal objective value.
, $z[k, m+1]=0$ for $k=1, \ldots, m$.

, For $1 \leq \mathrm{k} \leq \ell \leq \mathrm{m}$ let $\mathrm{z}[\mathrm{k}, \ell]$ be the smallest possible total delay of passengers with origin $\geq \mathrm{k}$ and destination $>\ell$ under the condition that the transfers at stations $k+1, \ldots, \ell-1$ are maintained.
, Then $\mathrm{z}[1,1]$ is the optimal objective value.
, $z[k, m+1]=0$ for $k=1, \ldots, m$.

$$
\mathrm{z}[\ell, \ell]=\underbrace{\mathrm{w}_{\ell, \ell+1} \cdot \mathrm{~d}_{\mathrm{a} \ell}}_{\text {dest. } \ell+1}+\underbrace{\mathrm{z}[\ell, \ell+1]}_{\text {dest. }>\ell+1}
$$

$$
\text { for } \ell=1, \ldots, \mathrm{~m}
$$

, For $1 \leq \mathrm{k} \leq \ell \leq \mathrm{m}$ let $\mathrm{z}[\mathrm{k}, \ell]$ be the smallest possible total delay of passengers with origin $\geq \mathrm{k}$ and destination $>\ell$ under the condition that the transfers at stations $k+1, \ldots, \ell-1$ are maintained.
, Then $\mathrm{z}[1,1]$ is the optimal objective value.
, $z[k, m+1]=0$ for $k=1, \ldots, m$.

$$
\begin{aligned}
& z[\ell, \ell]=w_{\ell, \ell+1} \cdot d_{a_{\ell}}+z[\ell, \ell+1] \quad \text { for } \ell=1, \ldots, m \\
& \text { dest. } \ell+1 \quad \text { dest. }>\ell+1 \\
& \text { don't wait at } \ell \\
& \overbrace{\text { dest. } \ell+1}^{\overbrace{\sum_{i=k}^{\ell} \mathrm{w}_{\mathrm{i}, \ell+1} \cdot \mathrm{D}[\mathrm{k}, \ldots, \ell]}^{\text {wait at } \ell}+\underbrace{z[k, \ell+1]}_{\text {dest. }>\ell+1}}\} \text { for } 1 \leq \mathrm{k}<\ell \leq m, \\
& z[k, \ell]=\min \{\overbrace{\underbrace{\sum_{k \leq i<\ell<j} w_{i, j} \cdot T}_{\text {origin }<\ell}+\underbrace{z[\ell, \ell]}_{\text {origin } \geq \ell}}^{\text {don'twait at } \ell},
\end{aligned}
$$

where $\mathrm{D}[\mathrm{k}, \ldots, \ell]$ is the delay of train ℓ if transfers are maintained at stations $\mathrm{k}+1, \ldots, \ell$.

, For $1 \leq k \leq \ell \leq m$ let $z[k, \ell]$ be the smallest possible total delay of passengers with origin $\geq k$ and destination $>\ell$ under the condition that the transfers at stations $k+1, \ldots, \ell-1$ are maintained.
, Then $\mathrm{z}[1,1]$ is the optimal objective value.
, $z[k, m+1]=0$ for $k=1, \ldots, m$.

$$
\begin{array}{ll}
z[\ell, \ell]=\underbrace{w_{\ell, \ell+1} \cdot d_{a, ~}}_{\text {dest. } \ell+1}+\underbrace{z[\ell, \ell+1]}_{\text {dest. }>\ell+1} \\
z[k, \ell]=\min \{\overbrace{\underbrace{\sum_{k \leq i<\ell<j} w_{i, j} \cdot T}_{\text {don't wait at } \ell}+\underbrace{z[\ell, \ell]}_{\text {origin }<\ell}}^{\text {origin } \geq \ell}
\end{array} \overbrace{\underbrace{\sum_{i=k}^{\ell} w_{i, \ell+1} \cdot D[k, \ldots, \ell]}_{\text {dest. } \ell+1}+\underbrace{z[k, \ell+1]}_{\text {dest. }>\ell+1}\}} \quad \text { for } \ell=1, \ldots, m
$$

where $\mathrm{D}[\mathrm{k}, \ldots, \ell]$ is the delay of train ℓ if transfers are maintained at stations $\mathrm{k}+1, \ldots, \ell$.

, For $1 \leq k \leq \ell \leq m$ let $z[k, \ell]$ be the smallest possible total delay of passengers with origin $\geq k$ and destination $>\ell$ under the condition that the transfers at stations $k+1, \ldots, \ell-1$ are maintained.
, Then $\mathrm{z}[1,1]$ is the optimal objective value.
, $z[k, m+1]=0$ for $k=1, \ldots, m$.

$$
\begin{array}{ll}
z[\ell, \ell]=\underbrace{w_{\ell, \ell+1} \cdot d_{a t}}_{\text {dest. } \ell+1}+\underbrace{z[\ell, \ell+1]}_{\text {dest. }>\ell+1} & \text { for } \ell=1, \ldots, m \\
z[k, \ell]=\min \{\overbrace{\underbrace{\sum_{k \leq i<\ell<j} w_{i, j} \cdot T}_{\text {origin }<\ell}+\underbrace{z[\ell, \ell]}_{\text {origin } \geq \ell}}^{\text {dont wait } \ell}, \overbrace{\underbrace{\sum_{i=k}^{\ell} w_{i, \ell+1} \cdot D[k, \ldots, \ell]}_{\text {dest. } \ell+1}+\underbrace{z[k, \ell+1]}_{\text {dest. }>\ell+1}\}}^{\text {wait at } \ell} \text { for } 1 \leq k<\ell \leq m,
\end{array}
$$

where $\mathrm{D}[\mathrm{k}, \ldots, \ell]$ is the delay of train ℓ if transfers are maintained at stations $\mathrm{k}+1, \ldots, \ell$.

, For $1 \leq k \leq \ell \leq m$ let $z[k, \ell]$ be the smallest possible total delay of passengers with origin $\geq k$ and destination $>\ell$ under the condition that the transfers at stations $k+1, \ldots, \ell-1$ are maintained.
, Then $\mathrm{z}[1,1]$ is the optimal objective value.
, $z[k, m+1]=0$ for $k=1, \ldots, m$.

$$
\begin{array}{ll}
z[\ell, \ell]=\underbrace{w_{\ell, \ell+1} \cdot d_{a \ell}}_{\text {dest. } \ell+1}+\underbrace{z[\ell, \ell+1]}_{\text {dest. }>\ell+1} & \text { for } \ell=1, \ldots, m \\
z[k, \ell]=\min \{\overbrace{\underbrace{\sum_{k \leq i<\ell<j} w_{i, j} \cdot T+\underbrace{z[\ell, \ell]}_{\text {wait at } \ell}}_{\text {origin }<\ell},}^{\overbrace{\text { origin } \geq \ell}} \overbrace{\underbrace{\ell}_{\text {dest. } \ell+1} w_{i=k} w_{i, \ell+1} \cdot D[k, \ldots, \ell]}+\underbrace{z[k, \ell+1]}_{\text {dest. }>\ell+1}\} & \text { for } 1 \leq k<\ell \leq m,
\end{array}
$$

where $\mathrm{D}[\mathrm{k}, \ldots, \ell]$ is the delay of train ℓ if transfers are maintained at stations $\mathrm{k}+1, \ldots, \ell$.

Example

$$
T=6
$$

	1	2	3	4	5	6
1						
2					0	
3					0	
4					0	
5					0	

Example

$$
T=6
$$

| | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | | 0 |
| 2 | | | | | | 0 |
| 3 | | | | | | 0 |
| 4 | | | | | 0 | 0 |
| 5 | | | | | | |

Example

$$
T=6
$$

	1	2	3	4	5	6
1						0
2						0
3					0	0
4					0	0

Example

$$
T=6
$$

	1	2	3	4	5	6	
1					0		
2					0		
3				24	0		
4				0	0	, Don't wait at 5: Wait at 5:	$4 \cdot 6+0=24$
5				0	0		$35 \cdot 1+0=35$

Example

$$
T=6
$$

Example

$$
T=6
$$

	1	2	3	4	5	6				
1					118	0				
2					24	0	,	Don't wait at 5:		$8 \cdot 6+0=168$
3					24	0				
4					0	0		Wait at 5:		9 $2+0=118$

Example

$$
T=6
$$

	1	2	3	4	5	6
1					118	0
2					24	0
3				0	24	0
4					0	0
5					0	0

Example

$$
T=6
$$

	1	2	3	4	5	6		
1					118	0		
2				24	0			
3				24	24	0		
4				0	0	0	, Don't wait at 4:	$4 \cdot 6+0=24$
5					0	0		$20 \cdot 2+24=64$

Example

$$
T=6
$$

Example

$$
T=6
$$

	1	2	3	4	5	6		
1				229	118	0		
2				126	24	0		
3				24	24	0	, Don't wait at 4:	$45 \cdot 6+0=270$
4				0	0	0	, Wait at 4:	$37 \cdot 3+118=229$
5					0	0		

Example

$$
T=6
$$

	1	2	3	4	5	6
1				229	118	0
2				126	24	0
3			24	24	24	0
4				0	0	0
5					0	0

Example

$$
T=6
$$

	12	3	4	5	6			
1			229	118	0			
2		126	126	24	0	,	Don't wait at 3:	$17 \cdot 6+24=126$
3		24	24	24	0			
4			0	0	0		Wait at 3:	$0 \cdot 4+126=126$
5				0	0			

Example

$$
T=6
$$

| | 1 | 2 | 3 | 4 | 5 | 6 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| 1 | | | 229 | 229 | 118 | 0 | | |
| 2 | | | 126 | 126 | 24 | 0 | | |
| 3 | | | 24 | 24 | 24 | 0 | | |
| 4 | | | | 0 | 0 | 0 | , Don't wait at 3: | $41 \cdot 6+24=270$ |
| 5 | | | | | 0 | 0 | | |

Example

$$
T=6
$$

	1	2	3	4	5	6
1			229	229	118	0
2		126	126	126	24	0
3			24	24	24	0
4				0	0	0
5					0	0

Example

$$
T=6
$$

| | 1 | 2 | 3 | 4 | 5 | 6 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| 1 | | 244 | 229 | 229 | 118 | 0 | | |
| 2 | | 126 | 126 | 126 | 24 | 0 | | |
| 3 | | , Don't wait at 2: | $39 \cdot 6+126=360$ | | | | | |
| 3 | | | 24 | 24 | 24 | 0 | | |
| 4 | | | | 0 | 0 | 0 | , Wait at 2: | $15 \cdot 1+229=244$ |
| 5 | | | | | 0 | 0 | | |

Example

$$
T=6
$$

	1	2	3	4	5	6
1	$\mathbf{2 4 4}$	244	229	229	118	0
2		126	126	126	24	0
3			24	24	24	0
4				0	0	0
5					0	0

Possible Future Work

, Approximation algorithms for more complicated networks
, Fixed-parameter tractability
, Online delay management

Future Work: Online Setting

Previous Work

, Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from $\{0,1\}$.

Future Work: Online Setting

Previous Work

, Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from $\{0,1\}$.
, The delays of all passengers boarding at station v_{i} become known when the train arrives at v_{i}.

Future Work: Online Setting

Previous Work

, Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from $\{0,1\}$.
, The delays of all passengers boarding at station v_{i} become known when the train arrives at v_{i}.
, In this case, a solution specifies a single station where the train waits and from which it keeps the delay.

Future Work: Online Setting

Previous Work

, Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from $\{0,1\}$.
, The delays of all passengers boarding at station v_{i} become known when the train arrives at v_{i}.
, In this case, a solution specifies a single station where the train waits and from which it keeps the delay.
, For this setting they give a 2-competitive online algorithm.

Future Work: Online Setting

Previous Work

, Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from $\{0,1\}$.
, The delays of all passengers boarding at station v_{i} become known when the train arrives at v_{i}.
, In this case, a solution specifies a single station where the train waits and from which it keeps the delay.
, For this setting they give a 2-competitive online algorithm.
, Krumke, Thielen, and Zeck gave a lower bound of 1.837 .

Future Work: Online Setting

Previous Work

, Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays from $\{0,1\}$.
, The delays of all passengers boarding at station v_{i} become known when the train arrives at v_{i}.
, In this case, a solution specifies a single station where the train waits and from which it keeps the delay.
, For this setting they give a 2-competitive online algorithm.
, Krumke, Thielen, and Zeck gave a lower bound of 1.837.

What about our setting?

, Arbitrary delays
, Slack times

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Example (A)
 $\mathrm{T}=2$

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Example (A)
 $\mathrm{T}=2$

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Example (A)
 $\mathrm{T}=2$

, Total delay: $(\phi+1) \cdot 2$
, Without waiting: $\phi \cdot 2+1$
, Competitive ratio: $\sqrt{5}-1 \approx 1.236$.

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Example (A)
 $\mathrm{T}=2$

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Example (A)
 $\mathrm{T}=2$

> Total delay: $\phi \cdot 2$
, With waiting: $\phi+1$
, Competitive ratio: $\sqrt{5}-1 \approx 1.236$.

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Example (B)

$\mathrm{T}=2$

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Example (B)

$\mathrm{T}=2$

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Example (B)

$\mathrm{T}=2$

Future Work: Online Setting

When does the delay become known?

A The delay of a train a_{i} becomes known when the train departs.
B The delay of a train a_{i} becomes known when the train arrives.

Example (B)

$\mathrm{T}=2$

, Total delay: $\varepsilon \cdot 2+1 \cdot x$,
, Waiting until arrival: $(1+\varepsilon) \cdot(x+\delta)$,
> Without waiting: $\varepsilon \cdot 2$,
, Competitive ratio: $\geq 1+\frac{1}{1+\varepsilon} \xrightarrow{\varepsilon \rightarrow 0} 2$.

Summary

1. The delay management problem on out-trees with source delays on the arcs can be solved in polynomial time by a dynamic program (while it is NP-hard for in-trees).

Summary

1. The delay management problem on out-trees with source delays on the arcs can be solved in polynomial time by a dynamic program (while it is NP-hard for in-trees).
2. There are different interesting online models (with simple lower bounds).

Thank you!

References

> M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer: Railway delay management: Exploring the algorithmic complexity. SWAT 2004
> M. Gatto, R. Jacob, L. Peeters, and P. Widmayer: Online delay management on a single train line. Dagstuhl Workshp Railway Optimization 2004
> M. Gatto, R. Jacob, L. Peeters, and A. Schöbel: The computational complexity of delay management. WG 2005
14 Delay Management on a Path

