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The Problem

FF FK HG HU AH ADST

La1 = 134min

9:19 11:33

La2 = 59min

11:46 12:45

La4 = 62min

16:01 17:03

La5 = 2min

17:16 17:18

La3 = 155min

da3 = 30min

13:04 15:39

24
15 17 20 31

Given: › Directed path (V,A) on nodes V = {v1, . . . , vm+1} with arcs ai = (vi, vi+1)

› planned departure times πdep
i

for i = 1, . . . ,m

› normal driving durations La ≥ 0 of arcs a ∈ A,

› source delays da ≥ 0 on the arcs a ∈ A,

› numbers wi,j ≥ 0 of passengers traveling from vi to vj for 1 ≤ i < j ≤ m+ 1,

› Delay T incurred by missing a connection (e.g. period length).

Task: Find new departure times xdep
i

≥ πdep
i

for i = 1, . . . ,m such that the total delay of all
passengers is minimized.
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Assumptions

› For all i ∈ {1, . . . ,m} the arrival time at node vi+1 in the disposition timetable will be

xarri+1 = xdep
i

+ Lai + dai .

› If xarri ≤ xdep
i

, then the transfer at vi ismaintained. Otherwise, it ismissed.

› For 1 ≤ i < j ≤ m+ 1 the origin-destination pair (i, j) ismaintained if the transfers at all vk,
k ∈ {i+ 1, . . . , j− 1}, are maintained. Otherwise, it is dropped.

› The objective function is ∑
1≤i<j≤m+1

(i,j)maintained

wi,j · (xarrj − πdep
j−1

− Laj−1) +
∑

1≤i<j≤m+1
(i,j) dropped

wi,j · T.
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1 2 3 4 5 6
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24 (+10)
15 (+0)

17 (+5)

20 (+12) 31 (+0)

Gatto et al., 2004

› Motivation: Passengers arrive by feeder trains that may be delayed.

› Each origin-destination pair has a given source delay. The planned trains do not get additional
delays.

› There are no slack times, i.e., if a train ai+1 waits for a train ai, then it will get exactly the same delay.

› If all passengers have delay in {0, 1}, the problem can be solved in polynomial time.

Gatto et al., 2005

› If there are slack times, the problem becomes NP-hard.
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Main Result

Theorem

The delay management problem on a line with delays occurring on the driving arcs can be
solved in timeO(m2), even if there are arbitrary delays and slack times at the transfer stations.

› The dynamic program can be generalized to out-trees.

› The hardness proof of Gatto et al. shows that the problem is hard for in-trees of the form
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› For 1 ≤ k ≤ ` ≤ m let z[k, `] be the smallest possible total delay of passengers with origin ≥ k and
destination > ` under the condition that the transfers at stations k+ 1, . . . , `− 1 are maintained.

› Then z[1, 1] is the optimal objective value.

› z[k,m+ 1] = 0 for k = 1, . . . ,m.

z[`, `] = w`,`+1 · da`︸ ︷︷ ︸
dest. `+1

+ z[`, `+ 1]︸ ︷︷ ︸
dest.>`+1

for ` = 1, . . . ,m

z[k, `] = min

{ don’t wait at `︷ ︸︸ ︷∑
k≤i<`<j

wi,j · T︸ ︷︷ ︸
origin<`

+ z[`, `]︸ ︷︷ ︸
origin≥`

,

wait at `︷ ︸︸ ︷∑̀
i=k

wi,`+1 · D[k, . . . , `]︸ ︷︷ ︸
dest. `+1

+ z[k, `+ 1]︸ ︷︷ ︸
dest.>`+1

}
for 1 ≤ k < ` ≤ m,

where D[k, . . . , `] is the delay of train ` if transfers are maintained at stations k+ 1, . . . , `.
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da2 = 1

La3 = 16

da3 = 3
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0
3
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0
4
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0
5

0

0
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Possible FutureWork

› Approximation algorithms for more complicated networks

› Fixed-parameter tractability

› Online delay management
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FutureWork: Online Setting

PreviousWork

› Gatto et al. (2004) consider a single line without slacks and passengers arriving with delays
from {0, 1}.

› The delays of all passengers boarding at station vi become known when the train arrives at vi.

› In this case, a solution specifies a single station where the train waits and from which it keeps
the delay.

› For this setting they give a 2-competitive online algorithm.

› Krumke, Thielen, and Zeck gave a lower bound of 1.837.

What about our setting?

› Arbitrary delays

› Slack times
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FutureWork: Online Setting

When does the delay become known?

A The delay of a train ai becomes known when the train departs.
B The delay of a train ai becomes known when the train arrives.

Example (A)

T = 2

1

πdep
1

= 0

2

πdep
2

= 1

3
La1 = 1

d1 = 1

La2 = 1

d2 = 1

φ
1

› Total delay: (φ+ 1) · 2
› With waiting: φ · 2+ 1

› Competitive ratio:
√
5− 1 ≈ 1.236.
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FutureWork: Online Setting

When does the delay become known?

A The delay of a train ai becomes known when the train departs.
B The delay of a train ai becomes known when the train arrives.

Example (B)

T = 2

1

πdep
1

= 0

2

πdep
2

= 1

3
La1 = 1

d1 = x+ δ

La2 = 1

ε
1

› Total delay: ε · 2+ 1 · x,
› Waiting until arrival: (1+ ε) · (x+ δ),

› Without waiting: ε · 2,

› Competitive ratio: ≥ 1+ 1
1+ε

ε→0−−−→ 2.
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Summary

1. The delay management problem on out-trees with source delays on the arcs can be solved in
polynomial time by a dynamic program (while it is NP-hard for in-trees).

2. There are different interesting online models (with simple lower bounds).
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Thank you!
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