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Identical Parallel Machine Scheduling (P ||
∑

wjCj)

Given: weights wj ≥ 0 and processing times pj ≥ 0 of jobs j = 1, . . . , n
and number m of machines.

Task: Process each job nonpreemptively for pj time units on one machine
such that the total weighted completion time

∑n
j=1 wjCj is minimized.
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I Classical NP-hard problem [Garey & Johnson, problem SS13]

I Polynomial-time approximation scheme [Skutella & Woeginger 1999]
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Weighted Shortest Processing Time (WSPT) Rule

WSPT rule

Whenever a machine is idle, start available job with max. ratio wj/pj on it.

The WSPT rule is optimal for a single machine [Smith 1956] and for unit
weights [Conway, Maxwell, & Miller 1967].

Theorem [Kawaguchi & Kyan 1986]

The WSPT rule is a 1
2 (1 +

√
2)-approximation, and this bound is tight.

S. Jäger, M. Skutella (TU Berlin) Generalizing the KK Bound to Stoch. Scheduling 1st March 2018 (STACS)



Stochastic Scheduling (P |pj ∼ stoch|E[
∑

wjCj ])
Given: weights wj ≥ 0 and distributions of independent random processing
times pj ≥ 0 of jobs j = 1, . . . , n and number m of machines.

t

Pr[pj ≥ t]
1 1 1 1

Task: Find nonpreemptive scheduling policy Π minimizing the expected
sum of weighted completion times.

A scheduling policy must be nonanticipative, i.e., a decision made at
time t may only depend on the information known at time t.

t t time0
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Weighted Shortest Expected Processing Time (WSEPT)
Rule

WSEPT rule

Whenever a machine is idle, start available job with largest ratio wj/E[pj ]
on it.
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Known Results

− WSEPT has no constant performance ratio (even for unit weights).
[Cheung et al. 2014; Im, Moseley, & Pruhs 2015]

+ WSEPT is optimal if

I there is only one machine [Rothkopf 1966],
I all jobs have unit weight and processing times are pairwise

stochastically comparable [Weber, Varaiya, & Walrand 1986].

+ If
Var[pj ]
E[pj ]2 ≤ ∆ for all j , then WSEPT has performance guarantee

1 +
m − 1

2m
· (1 + ∆) ≤ 1 + 1

2 · (1 + ∆).

[Möhring, Schulz, & Uetz 1999]
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Performance Guarantees
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Auxiliary Objective Function

Given: Smith ratios ρj and distributions of independent random processing
times pj ≥ 0 of jobs j = 1, . . . , n and number m of machines.

Task: Find nonpreemptive scheduling policy minimizing the expected sum
of weighted completion times, where each job is weighted with its Smith
ratio times its actual processing time.

I The weight of a job is a random variable wj = ρjpj .

I The Smith ratio ρj of a job is deterministic.

Remark

List scheduling the jobs in nonincreasing order of their Smith ratios ρj is a
1
2 (1 +

√
2)-approximation for the auxiliary objective function.
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Proof of WSEPT’s Performance Guarantee

Claim

The WSEPT rule is a 1 + 1
2 (
√

2− 1) · (1 + ∆)-approximation for
P|pj ∼ stoch|E[

∑
wjCj ].

Consider auxiliary objective function with Smith ratios ρj := wj/E[pj ].

Then, for every policy Π:

Obj(Π)

original objective function value

=
n∑

j=1

ρj E[pj ] E[CΠ
j ] Obj′(Π)

auxiliary objective function value

=
n∑

j=1

ρj E[pjCΠ
j ]

E[pjCΠ
j ] = E[pj(SΠ

j + pj)] = E[pjSΠ
j ] + E[p2

j ]

nonanticipativity

= E[pj ] E[SΠ
j ] + E[pj ]

2 + Var[pj ] = E[pj ] E[CΠ
j ] + Var[pj ].

S. Jäger, M. Skutella (TU Berlin) Generalizing the KK Bound to Stoch. Scheduling 1st March 2018 (STACS)



Proof of WSEPT’s Performance Guarantee

Obj′(Π) = Obj(Π) +
n∑

j=1

ρj Var[pj ]︸ ︷︷ ︸
=:c

≤ Obj(Π) +
n∑

j=1

∆wj E[pj ]︸ ︷︷ ︸
c≤∆ OPT

.

OPT WSEPT OPT′ WSEPT′

c

c

≤ 1
2 (1 +

√
2)≤ 1 + 1

2 (
√

2− 1)(1 + ∆)

WSEPT = WSEPT′−c ≤ 1
2 (1 +

√
2) OPT′−c

= 1
2 (1 +

√
2)(OPT +c)− c = OPT + 1

2 (
√

2− 1)(OPT +c)

c ≤ ∆ OPT ≤ (1 + 1
2 (
√

2− 1)(1 + ∆)) OPT

S. Jäger, M. Skutella (TU Berlin) Generalizing the KK Bound to Stoch. Scheduling 1st March 2018 (STACS)



Concluding Remarks

I Considering α-points instead of completion times reduces the
constant c, and thus yields the better performance guarantee.

I The derived bound is the best known performance guarantee of any
algorithm for P|pj ∼ stoch|E[

∑
wjCj ].

I For pj ∼ exp, WSEPT’s approximation ratio lies in [1.243, 4/3]
(lower bound due to Jagtenberg, Schwiegelshohn, & Uetz 2013).

Even in this special case no better approximation is known.

I The performance guarantee can be refined for fixed numbers of
machines.
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Thank you!



Literature
I M. Skutella and G. J. Woeginger: A PTAS for Minimizing the Total Weighted Completion

Time on Identical Parallel Machines, Math. Oper. Res. 25(1):63–75, 2000

I W. E. Smith: Various optimizers for single-stage production, Nav. Res. Logist. Q.
3(1-2):59–66, 1956

I R. W. Conway, W. L. Maxwell, and L. W. Miller: Theory of Scheduling, Addison-Wesley,
1967

I T. Kawaguchi and S. Kyan: Worst Case Bound of an LRF Schedule for the Mean
Weighted Flow-time Problem, SIAM J. Comput. 15(4):1119–1129, 1986

I W. C. Cheung, F. Fischer, J. Matuschke, and N. Megow: A Ω(∆1/2) gap example for the
WSEPT policy, cited as personal communication in an exercise by Marc Uetz from the
MDS Autumn School 2014

I S. Im, B. Moseley, and K. Pruhs: Stochastic Scheduling of Heavy-tailed Jobs,
32nd STACS:474–486, 2015

I M. H. Rothkopf: Scheduling with Random Service Times, Manage. Sci. 12(9):707–713,
1966

I R. R. Weber, P. Varaiya, and J. Walrand: Scheduling jobs with stochastically ordered
processing times on parallel machines to minimize expected flowtime, J. Appl. Probab.
23(3):841–847, 1986
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