Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel Machine Scheduling

Sven Jäger Martin Skutella

Combinatorial Optimization and Graph Algorithms Technische Universität Berlin

35th Symposium on Theoretical Aspects of Computer Science 1st March 2018

Identical Parallel Machine Scheduling $(P||\sum w_j C_j)$

Given: weights $w_j \ge 0$ and processing times $p_j \ge 0$ of jobs j = 1, ..., n and number *m* of machines.

Task: Process each job nonpreemptively for p_j time units on one machine such that the total weighted completion time $\sum_{j=1}^{n} w_j C_j$ is minimized.

- Classical NP-hard problem [Garey & Johnson, problem SS13]
- Polynomial-time approximation scheme [Skutella & Woeginger 1999]

Weighted Shortest Processing Time (WSPT) Rule

WSPT rule

Whenever a machine is idle, start available job with max. ratio w_j/p_j on it.

The WSPT rule is optimal for a single machine [Smith 1956] and for unit weights [Conway, Maxwell, & Miller 1967].

Theorem [Kawaguchi & Kyan 1986]

The WSPT rule is a $\frac{1}{2}(1+\sqrt{2})$ -approximation, and this bound is tight.

Stochastic Scheduling $(P|p_j \sim \text{stoch}| E[\sum w_j C_j])$

Given: weights $w_j \ge 0$ and distributions of independent random processing times $p_j \ge 0$ of jobs j = 1, ..., n and number *m* of machines.

Task: Find nonpreemptive scheduling policy Π minimizing the expected sum of weighted completion times.

A scheduling policy must be nonanticipative, i.e., a decision made at time t may only depend on the information known at time t.

Weighted Shortest Expected Processing Time (WSEPT) Rule

WSEPT rule

Whenever a machine is idle, start available job with largest ratio $w_j / E[\mathbf{p}_j]$ on it.

Known Results

WSEPT is optimal if

- there is only one machine [Rothkopf 1966],
- all jobs have unit weight and processing times are pairwise stochastically comparable [Weber, Varaiya, & Walrand 1986].

• If
$$\frac{Var[\mathbf{p}_j]}{E[\mathbf{p}_j]^2} \leq \Delta$$
 for all j , then WSEPT has performance guarantee

$$1+\frac{m-1}{2m}\cdot(1+\Delta)\leq 1+\frac{1}{2}\cdot(1+\Delta).$$

[Möhring, Schulz, & Uetz 1999]

Performance Guarantees

Performance Guarantees

Auxiliary Objective Function

Given: Smith ratios ρ_j and distributions of independent random processing times $\boldsymbol{p}_j \geq 0$ of jobs j = 1, ..., n and number m of machines.

Task: Find nonpreemptive scheduling policy minimizing the expected sum of weighted completion times, where each job is weighted with its Smith ratio times its actual processing time.

- The weight of a job is a random variable $w_j = \rho_j p_j$.
- The Smith ratio ρ_j of a job is deterministic.

Remark

List scheduling the jobs in nonincreasing order of their Smith ratios ρ_j is a $\frac{1}{2}(1 + \sqrt{2})$ -approximation for the auxiliary objective function.

Proof of WSEPT's Performance Guarantee

Claim

O

The WSEPT rule is a $1 + \frac{1}{2}(\sqrt{2} - 1) \cdot (1 + \Delta)$ -approximation for $P|\mathbf{p}_j \sim \operatorname{stoch}| \operatorname{E}[\sum w_j \mathbf{C}_j].$

Consider auxiliary objective function with Smith ratios $\rho_j := w_j / E[\mathbf{p}_j]$. Then, for every policy Π :

$$\begin{aligned} \operatorname{Obj}(\Pi) &= \sum_{j=1}^{n} \rho_{j} \operatorname{E}[\boldsymbol{p}_{j}] \operatorname{E}[\boldsymbol{C}_{j}^{\Pi}] & \operatorname{Obj}'(\Pi) &= \sum_{j=1}^{n} \rho_{j} \operatorname{E}[\boldsymbol{p}_{j} \boldsymbol{C}_{j}^{\Pi}] \\ \text{auxiliary objective function value} & \text{auxiliary objective function value} \\ \operatorname{E}[\boldsymbol{p}_{j} \boldsymbol{C}_{j}^{\Pi}] &= \operatorname{E}[\boldsymbol{p}_{j} (\boldsymbol{S}_{j}^{\Pi} + \boldsymbol{p}_{j})] &= \operatorname{E}[\boldsymbol{p}_{j} \boldsymbol{S}_{j}^{\Pi}] + \operatorname{E}[\boldsymbol{p}_{j}^{2}] \\ &= \operatorname{E}[\boldsymbol{p}_{j}] \operatorname{E}[\boldsymbol{S}_{j}^{\Pi}] + \operatorname{E}[\boldsymbol{p}_{j}]^{2} + \operatorname{Var}[\boldsymbol{p}_{j}] &= \operatorname{E}[\boldsymbol{p}_{j}] \operatorname{E}[\boldsymbol{C}_{j}^{\Pi}] + \operatorname{Var}[\boldsymbol{p}_{j}]. \\ & \text{nonanticipativity} \end{aligned}$$

S. Jäger, M. Skutella (TU Berlin) Generalizing the KK Bound to Stoch. Scheduling

Proof of WSEPT's Performance Guarantee

$$\begin{split} \mathsf{WSEPT} &= \mathsf{WSEPT}' - c \leq \frac{1}{2}(1 + \sqrt{2})\,\mathsf{OPT}' - c \\ &= \frac{1}{2}(1 + \sqrt{2})(\mathsf{OPT} + c) - c = \mathsf{OPT} + \frac{1}{2}(\sqrt{2} - 1)(\mathsf{OPT} + c) \\ &c \leq \Delta\,\mathsf{OPT} \\ &\leq (1 + \frac{1}{2}(\sqrt{2} - 1)(1 + \Delta))\,\mathsf{OPT} \end{split}$$

Concluding Remarks

- Considering α-points instead of completion times reduces the constant c, and thus yields the better performance guarantee.
- ► The derived bound is the best known performance guarantee of any algorithm for P|p_j ~ stoch| E[∑ w_jC_j].
- ► For p_j ~ exp, WSEPT's approximation ratio lies in [1.243, 4/3] (lower bound due to Jagtenberg, Schwiegelshohn, & Uetz 2013).

Even in this special case no better approximation is known.

The performance guarantee can be refined for fixed numbers of machines.

Thank you!

Literature

- M. Skutella and G. J. Woeginger: A PTAS for Minimizing the Total Weighted Completion Time on Identical Parallel Machines, Math. Oper. Res. 25(1):63–75, 2000
- W. E. Smith: Various optimizers for single-stage production, Nav. Res. Logist. Q. 3(1-2):59–66, 1956
- R. W. Conway, W. L. Maxwell, and L. W. Miller: Theory of Scheduling, Addison-Wesley, 1967
- T. Kawaguchi and S. Kyan: Worst Case Bound of an LRF Schedule for the Mean Weighted Flow-time Problem, SIAM J. Comput. 15(4):1119–1129, 1986
- W. C. Cheung, F. Fischer, J. Matuschke, and N. Megow: A Ω(Δ^{1/2}) gap example for the WSEPT policy, cited as personal communication in an exercise by Marc Uetz from the MDS Autumn School 2014
- S.Im, B. Moseley, and K. Pruhs: Stochastic Scheduling of Heavy-tailed Jobs, 32nd STACS:474–486, 2015
- M. H. Rothkopf: Scheduling with Random Service Times, Manage. Sci. 12(9):707–713, 1966
- R. R. Weber, P. Varaiya, and J. Walrand: Scheduling jobs with stochastically ordered processing times on parallel machines to minimize expected flowtime, J. Appl. Probab. 23(3):841–847, 1986
- R. H. Möhring, A. S. Schulz, and M. Uetz: Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies, J. ACM 46(6):924–942, 1999
- C. Jagtenberg, U. Schwiegelshohn, and M. Uetz: Analysis of Smith's rule in stochastic machine scheduling, Oper. Res. Lett. 41(6):570–575, 2013