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Gray codes

Exhaustive listing of a class of combinatorial objects where
successive objects differ by a small amount.

Examples

o All bitstrings of length d where successive bitstrings differ by a
single bitflip. [Gray 53]

e All spanning trees of a graph where two successive spanning
trees differ by exchanging a single edge. [Cummins 66]

e All triangulations of a regular n-gon where successive
triangulations differ by a single edge-flip. [Lucas 87]

Applications

® Generate all objects in a combinatorial class quickly (small
transformation in each step)

® Error correction, Boolean circuit minimization, ...
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Binary reflected Gray code

Theorem [Gray 53]

For d € N there is a cyclic listing of all bitstrings of length d,
where two successive bistrings differ in a single bit.

Equivalent: There is a Hamilton cycle in the d-cube.
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Middle levels theorem

Theorem [Miitze 16]

For n € N the subgraph induced by the middle two levels of the
(2n + 1)-cube has a Hamilton cycle.
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Generalized middle levels conjecture

Conjecture [Savage 93, Gregor, Skrekovski 10, Shen, Williams 15] For
n € Nand 1 </ <n+1 the subgraph of the (2n + 1)-cube
induced by the middle 2¢ levels has a Hamilton cycle.
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Known results

Let n € N.

f=n+1 Hamilton cycle
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Our results

Theorem 1

For n € N the subgraph of the (2n + 1)-cube induced by the
middle four levels has a Hamilton cycle.

Q2n+1
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level n +2----
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Our results

Theorem 2

Forn € N and 1 < ¢ <n+1 the subgraph of the (2n + 1)-cube
induced by the middle 2¢ levels has a cycle factor (2-factor), i.e.,
a spanning 2-regular subgraph.

Q2n+1
level 2n +1-------- —/0\11. 21
level n 4 £ -----
level n +1—¢0-----
level 0 ----00.. .O\O/

A cycle factor is often the first step for proving Hamiltonicity.
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Known results
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Proof of Theorem 2
Theorem 2 (Reminder)

The subgraph of the (2n + 1)-cube induced by the middle 2¢ levels
has a cycle factor.

Ingredients

Symmetric chain Symmetric chain decomposition
(5CD) [de Bruijn et al. 51]
Q2n+l Q2n+1
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Proof of Theorem 2

Theorem 2 (Reminder)

The subgraph of the (2n + 1)-cube induced by the middle 2¢ levels
has a cycle factor.

Q2n+1 has two edge-disjoint SCDs. [Shearer, Kleitman 79]
Restrict to the middle 2¢ levels.

Each chain has an odd
numbel.' of edges. Mob 1 oo -
= Taking every second

o n+4l-----
edge from each chain yields
two disjoint perfect %

matchings. N R
Their union is a cycle " p

factor. n—l—l—f*"*&
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Edge-disjoint SCDs in the hypercube

Theorem 3
For any d > 12 the d-cube contains four pairwise edge-disjoint
SCDs.

Combining any pair of them gives six distinct cycle factors.

Known results

® ()4 has two almost orthogonal SCDs for all d > 2.
[Shearer, Kleitman 79]

® ()4 has three pairwise almost orthogonal SCDs for all d > 24.
[Spink 17]
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Edge-disjoint SCDs in the hypercube

Theorem 3
For any d > 12 the d-cube contains four pairwise edge-disjoint
SCDs.
Proof structure
1. For even d > 6 there is a direct construction.

2. Q7 contains four pairwise edge-disjoint SCDs (ad hoc
construction).

3. If Q, and @} contain k pairwise edge-disjoint SCDs, then
Q..p contains k pairwise edge-disjoint SCDs.

Remark The cases d = 6,7 together with Part 3 would establish
the claim for all d > 30.
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Product construction of SCDs
Lemma (cf. de Bruijn et al. 51, Spink 17)

Let a,b,k € N. If Q, and Q) each contain k pairwise edge-disjoint
SCDs, then Qu1p = Q. U Qp contains k pairwise edge-disjoint
SCD:s.
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Edge-disjoint SCDs in the hypercube

Theorem 3
For any d > 12 the d-cube contains four pairwise edge-disjoint
SCD:s.
Proof structure
1. For even d > 6 there is a direct construction.

2. Q7 contains four pairwise edge-disjoint SCDs (ad hoc
construction).

3. If Q, and Q) contain k pairwise edge-disjoint SCDs, then
Qq+b contains k pairwise edge-disjoint SCDs.
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The even case

Proof is based on lexical matchings [Kierstead, Trotter 88] between
consecutive levels.
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Edge-disjoint SCDs in the hypercube

Theorem 3
For any d > 12 the d-cube contains four pairwise edge-disjoint
SCD:s.
Proof structure
1. For even d > 6 there is a direct construction.

2. ()7 contains four pairwise edge-disjoint SCDs (ad hoc
construction).

3. If Q, and Q) contain k pairwise edge-disjoint SCDs, then
Qq+b contains k pairwise edge-disjoint SCDs.
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Four edge-disjoint SCDs in ()7

Problem Brute force too slow!

Reduce the graph
® Remove the vertices 0000000 and 1111111.
e Combine bitstrings that differ by a rotation to a single vertex
representing a necklace.
= Every necklace contains 7 bitstrings (7 being prime).

® The number of edges between two necklaces [z] and [y] is
[Na-(z) N[yl = [l2] N No, (y)]-
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Four edge-disjoint SCDs in ()

Edge-disjoint SCDs in the reduced multigraph correspond to
edge-disjoint SCDs in Q7.
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Proof Sketch of Theorem 1

Theorem 1 (Reminder)

The subgraph of the (2n + 1)-cube induced by the middle four
levels has a Hamilton cycle.

1. Build a cycle factor of the graph.

2. Join cycles by taking symmetric differences with 6-cycles.

Bt

Show that all cycles can be joined to a Hamilton cycle.
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Proof Sketch of Theorem 1
Theorem 1 (Reminder)

The subgraph of the (2n + 1)-cube induced by the middle four
levels has a Hamilton cycle.

Find combinatorial interpretation of cycles in the cycle factor

OO _ X+
O i

Characterize when two cycles can be joined.
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Proof Sketch of Theorem 1

Theorem 1 (Reminder)

The subgraph of the (2n + 1)-cube induced by the middle four
levels has a Hamilton cycle.

Find combinatorial interpretation of cycles in the cycle factor

Q O ordered rooted trees with n + 2 vertices
<——>

”
A0 B
) T 4

Characterize when two cycles can be joined.

® Follow cycle +— Do special rotation.

® Join cycle segments <— Do pull operation.

Every tree can be transformed to every other tree.
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Open problems

® Analyze the new SCDs to find a combinatorial interpretation
of the resulting cycle factor in order to make progress in the
generalized middle levels conjecture.

® Prove or disprove that the d-cube has |d/2] + 1 pairwise
edge-disjoint SCDs. (cf. Shearer, Kleitman 79)

® (Clearly upper bound
® Trueford <7

® Prove or disprove that almost all cubes have five pairwise
edge-disjoint SCDs. (Smallest open dimension d = 8)
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Thank youl!
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