Gray codes and symmetric chains

Petr Gregor ${ }^{1}$ Sven Jäger ${ }^{2}$ Torsten Mütze ${ }^{2}$ Joe Sawada ${ }^{3}$ Kaja Wille ${ }^{2}$
${ }^{1}$ Univerzita Karlova, Praha
${ }^{2}$ Technische Universität Berlin
${ }^{3}$ University of Guelph

International Colloquium on Automata, Languages, and Programming

11th July 2018

Gray codes

Exhaustive listing of a class of combinatorial objects where successive objects differ by a small amount.

Examples

- All bitstrings of length d where successive bitstrings differ by a single bitflip. [Gray 53]
- All spanning trees of a graph where two successive spanning trees differ by exchanging a single edge. [Cummins 66]
- All triangulations of a regular n-gon where successive triangulations differ by a single edge-flip. [Lucas 87]

Applications

- Generate all objects in a combinatorial class quickly (small transformation in each step)
- Error correction, Boolean circuit minimization, ...

Binary reflected Gray code

Theorem [Gray 53]

For $d \in \mathbb{N}$ there is a cyclic listing of all bitstrings of length d, where two successive bistrings differ in a single bit.

Equivalent: There is a Hamilton cycle in the d-cube.

Middle levels theorem

Theorem [Mütze 16]

For $n \in \mathbb{N}$ the subgraph induced by the middle two levels of the $(2 n+1)$-cube has a Hamilton cycle.

$$
Q_{3}(n=1)
$$

Generalized middle levels conjecture

Conjecture [Savage 93, Gregor, Škrekovski 10, Shen, Williams 15] For $n \in \mathbb{N}$ and $1 \leq \ell \leq n+1$ the subgraph of the $(2 n+1)$-cube induced by the middle 2ℓ levels has a Hamilton cycle.

Known results

$$
\begin{aligned}
& \text { Let } n \in \mathbb{N} \text {. } \\
& \qquad \begin{array}{l}
\ell=n+1 \\
\ell=n
\end{array} \\
& \ell=n-1
\end{aligned}
$$

$$
\ell=1
$$

Our results

Theorem 1

For $n \in \mathbb{N}$ the subgraph of the $(2 n+1)$-cube induced by the middle four levels has a Hamilton cycle.

Our results

Theorem 2

For $n \in \mathbb{N}$ and $1 \leq \ell \leq n+1$ the subgraph of the $(2 n+1)$-cube induced by the middle 2ℓ levels has a cycle factor (2-factor), i.e., a spanning 2-regular subgraph.

$$
Q_{2 n+1}
$$

A cycle factor is often the first step for proving Hamiltonicity.

Known results

$$
\begin{aligned}
& \text { Let } n \in \mathbb{N} \text {. } \\
& \qquad \begin{array}{l}
\ell=n+1 \\
\ell=n
\end{array} \\
& \ell=n-1
\end{aligned}
$$

$$
\ell=1
$$

Proof of Theorem 2

Theorem 2 (Reminder)

The subgraph of the $(2 n+1)$-cube induced by the middle 2ℓ levels has a cycle factor.

Ingredients

Symmetric chain
Symmetric chain decomposition (SCD) [de Bruijn et al. 51]

Proof of Theorem 2

Theorem 2 (Reminder)

The subgraph of the $(2 n+1)$-cube induced by the middle 2ℓ levels has a cycle factor.

- $Q_{2 n+1}$ has two edge-disjoint SCDs. [Shearer, Kleitman 79]
- Restrict to the middle 2ℓ levels.
- Each chain has an odd number of edges.
\Rightarrow Taking every second edge from each chain yields two disjoint perfect matchings.
- Their union is a cycle factor.

Edge-disjoint SCDs in the hypercube

Theorem 3
For any $d \geq 12$ the d-cube contains four pairwise edge-disjoint SCDs.

Combining any pair of them gives six distinct cycle factors.
Known results

- Q_{d} has two almost orthogonal SCDs for all $d \geq 2$.
[Shearer, Kleitman 79]
- Q_{d} has three pairwise almost orthogonal SCDs for all $d \geq 24$. [Spink 17]

Edge-disjoint SCDs in the hypercube

Theorem 3

For any $d \geq 12$ the d-cube contains four pairwise edge-disjoint SCDs.

Proof structure

1. For even $d \geq 6$ there is a direct construction.
2. Q_{7} contains four pairwise edge-disjoint SCDs (ad hoc construction).
3. If Q_{a} and Q_{b} contain k pairwise edge-disjoint SCDs, then Q_{a+b} contains k pairwise edge-disjoint SCDs.

Remark The cases $d=6,7$ together with Part 3 would establish the claim for all $d \geq 30$.

Product construction of SCDs

Lemma (cf. de Bruijn et al. 51, Spink 17)
Let $a, b, k \in \mathbb{N}$. If Q_{a} and Q_{b} each contain k pairwise edge-disjoint SCDs, then $Q_{a+b} \cong Q_{a} \square Q_{b}$ contains k pairwise edge-disjoint SCDs.

Edge-disjoint SCDs in the hypercube

Theorem 3

For any $d \geq 12$ the d-cube contains four pairwise edge-disjoint SCDs.

Proof structure

1. For even $d \geq 6$ there is a direct construction.
2. Q_{7} contains four pairwise edge-disjoint SCDs (ad hoc construction).
3. If Q_{a} and Q_{b} contain k pairwise edge-disjoint SCDs, then Q_{a+b} contains k pairwise edge-disjoint SCDs.

The even case

Proof is based on lexical matchings [Kierstead, Trotter 88] between consecutive levels.

Edge-disjoint SCDs in the hypercube

Theorem 3

For any $d \geq 12$ the d-cube contains four pairwise edge-disjoint SCDs.

Proof structure

1. For even $d \geq 6$ there is a direct construction.
2. Q_{7} contains four pairwise edge-disjoint SCDs (ad hoc construction).
3. If Q_{a} and Q_{b} contain k pairwise edge-disjoint SCDs, then Q_{a+b} contains k pairwise edge-disjoint SCDs.

Four edge-disjoint SCDs in Q_{7}

Problem Brute force too slow!
Reduce the graph

- Remove the vertices 0000000 and 1111111.
- Combine bitstrings that differ by a rotation to a single vertex representing a necklace.
\Rightarrow Every necklace contains 7 bitstrings (7 being prime).
- The number of edges between two necklaces $[x]$ and $[y]$ is $\left|N_{Q_{7}}(x) \cap[y]\right|=\left|[x] \cap N_{Q_{7}}(y)\right|$.

Four edge-disjoint SCDs in Q_{7}

Edge-disjoint SCDs in the reduced multigraph correspond to edge-disjoint SCDs in Q_{7}.

Proof Sketch of Theorem 1

Theorem 1 (Reminder)

The subgraph of the $(2 n+1)$-cube induced by the middle four levels has a Hamilton cycle.

1. Build a cycle factor of the graph.
2. Join cycles by taking symmetric differences with 6 -cycles.

Show that all cycles can be joined to a Hamilton cycle.

Proof Sketch of Theorem 1

Theorem 1 (Reminder)

The subgraph of the $(2 n+1)$-cube induced by the middle four levels has a Hamilton cycle.
Find combinatorial interpretation of cycles in the cycle factor

Characterize when two cycles can be joined.

Proof Sketch of Theorem 1

Theorem 1 (Reminder)

The subgraph of the $(2 n+1)$-cube induced by the middle four levels has a Hamilton cycle.

Find combinatorial interpretation of cycles in the cycle factor

Characterize when two cycles can be joined.

- Follow cycle \longleftrightarrow Do special rotation.
- Join cycle segments \longleftrightarrow Do pull operation.

Every tree can be transformed to every other tree.

Open problems

- Analyze the new SCDs to find a combinatorial interpretation of the resulting cycle factor in order to make progress in the generalized middle levels conjecture.
- Prove or disprove that the d-cube has $\lfloor d / 2\rfloor+1$ pairwise edge-disjoint SCDs. (cf. Shearer, Kleitman 79)
- Clearly upper bound
- True for $d \leq 7$
- Prove or disprove that almost all cubes have five pairwise edge-disjoint SCDs. (Smallest open dimension $d=8$)

Thank you!

Literature

- F. Gray: Pulse code communication, US Patent 2632058, March 1953.
- J. M. Lucas: The rotation graph of binary trees is Hamiltonian, J. Algorithms, 8(4):503-535, 1987
- R. Cummnis: Hamilton Circuits in Tree Graphs, IEEE Trans. Circuit Theory, 13(1):82-90, 1966
- T. Mütze: Proof of the middle levels conjecture, Proc. London Math. Soc., 112(4):677-713, 2016
- C. D. Savage: Long cycles in the middle two levels of the Boolean lattice, Ars Combin., 35(A):97-108, 1993
- P. Gregor and R. Škrekovski: On generalized middle-level problem, Inform. Sciences, 180(12):2448-2457, 2010
- M. El-Hashash and A. Hassan: On the Hamiltonicity of two subgraphs of the hypercube, SEICCGTC'01, 7-32, 2001
- S. C. Locke and R. Stong: Spanning Cycles in Hypercubes, Amer. Math. Monthly, 110(5):440-441, 2003
- N. G. de Bruijn, C. van Ebbenhorst Tengbergen, and D. Kruyswijk: On the set of divisors of a number, Nieuw Arch. Wisk. (2), 23:191-193, 1951
- J. Shearer and D. J. Kleitman: Probabilities of Independent Choices Being Ordered, Stud. Appl. Math., 60(3):271-275, 1979
- H. Spink: Orthogonal Symmetric Chain Decompositions of Hypercubes, arXiv-Preprint, 2017
- H. A. Kierstead and W. T. Trotter: Explicit Matchings in the Middle Levels of the Boolean Lattice, Order, 5(2):163-171, 1988

