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Gray codes

Exhaustive listing of a class of combinatorial objects where
successive objects differ by a small amount.

Examples

• All bitstrings of length d where successive bitstrings differ by a
single bitflip. [Gray 53]

• All spanning trees of a graph where two successive spanning
trees differ by exchanging a single edge. [Cummins 66]

• All triangulations of a regular n-gon where successive
triangulations differ by a single edge-flip. [Lucas 87]

Applications

• Generate all objects in a combinatorial class quickly (small
transformation in each step)

• Error correction, Boolean circuit minimization, . . .
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Binary reflected Gray code

Theorem [Gray 53]

For d ∈ N there is a cyclic listing of all bitstrings of length d,
where two successive bistrings differ in a single bit.

Equivalent: There is a Hamilton cycle in the d-cube.
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Middle levels theorem

Theorem [Mütze 16]

For n ∈ N the subgraph induced by the middle two levels of the
(2n+ 1)-cube has a Hamilton cycle.
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Generalized middle levels conjecture

Conjecture [Savage 93, Gregor, Škrekovski 10, Shen, Williams 15] For
n ∈ N and 1 ≤ ` ≤ n+ 1 the subgraph of the (2n+ 1)-cube
induced by the middle 2` levels has a Hamilton cycle.

level n+ 1− `

level n+ `

level 2n+ 1

00. . .0level 0

11. . .1

Q2n+1
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Known results

Let n ∈ N.

` = n+ 1 Hamilton cycle [Gray 53]

` = n Hamilton cycle
[El-Hashash, Hassan 01],
[Locke, Stong 03]

` = n− 1 Hamilton cycle [Gregor, Škrekovski 10]

?

` = 1 Hamilton cycle [Mütze 16]
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Our results

Theorem 1

For n ∈ N the subgraph of the (2n+ 1)-cube induced by the
middle four levels has a Hamilton cycle.
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A cycle factor is often the first step for proving Hamiltonicity.
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Our results

Theorem 2

For n ∈ N and 1 ≤ ` ≤ n+ 1 the subgraph of the (2n+ 1)-cube
induced by the middle 2` levels has a cycle factor (2-factor), i.e.,
a spanning 2-regular subgraph.
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A cycle factor is often the first step for proving Hamiltonicity.
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Proof of Theorem 2

Theorem 2 (Reminder)

The subgraph of the (2n+ 1)-cube induced by the middle 2` levels
has a cycle factor.

Ingredients

Symmetric chain decomposition
(SCD)
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Symmetric chain decomposition
(SCD) [de Bruijn et al. 51]
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Proof of Theorem 2

Theorem 2 (Reminder)

The subgraph of the (2n+ 1)-cube induced by the middle 2` levels
has a cycle factor.

• Q2n+1 has two edge-disjoint SCDs. [Shearer, Kleitman 79]

• Restrict to the middle 2` levels.

• Each chain has an odd
number of edges.
⇒ Taking every second
edge from each chain yields
two disjoint perfect
matchings.

• Their union is a cycle
factor.

Symmetric chain decomposition
(SCD) [de Bruijn et al. 51]
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Edge-disjoint SCDs in the hypercube

Theorem 3

For any d ≥ 12 the d-cube contains four pairwise edge-disjoint
SCDs.

Combining any pair of them gives six distinct cycle factors.

Known results

• Qd has two almost orthogonal SCDs for all d ≥ 2.
[Shearer, Kleitman 79]

• Qd has three pairwise almost orthogonal SCDs for all d ≥ 24.
[Spink 17]
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Edge-disjoint SCDs in the hypercube

Theorem 3

For any d ≥ 12 the d-cube contains four pairwise edge-disjoint
SCDs.

Proof structure

1. For even d ≥ 6 there is a direct construction.

2. Q7 contains four pairwise edge-disjoint SCDs (ad hoc
construction).

3. If Qa and Qb contain k pairwise edge-disjoint SCDs, then
Qa+b contains k pairwise edge-disjoint SCDs.

Remark The cases d = 6, 7 together with Part 3 would establish
the claim for all d ≥ 30.
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Product construction of SCDs
Lemma (cf. de Bruijn et al. 51, Spink 17)

Let a, b, k ∈ N. If Qa and Qb each contain k pairwise edge-disjoint
SCDs, then Qa+b

∼= Qa �Qb contains k pairwise edge-disjoint
SCDs.
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The even case

Proof is based on lexical matchings [Kierstead, Trotter 88] between
consecutive levels.
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Four edge-disjoint SCDs in Q7

Problem Brute force too slow!

Reduce the graph

• Remove the vertices 0000000 and 1111111.

• Combine bitstrings that differ by a rotation to a single vertex
representing a necklace.
⇒ Every necklace contains 7 bitstrings (7 being prime).

• The number of edges between two necklaces [x] and [y] is
|NQ7(x) ∩ [y]| = |[x] ∩NQ7(y)|.

[1000000]

[1100000] [1010000][1001000]

[1110000] [1011000] [1101000][1001100] [1010100]

[1111000] [1011100] [1101100] [1001110] [1010110]

[1111100] [1011110][1101110]

[1111110]
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Four edge-disjoint SCDs in Q7

Edge-disjoint SCDs in the reduced multigraph correspond to
edge-disjoint SCDs in Q7.

[1000000]

[1100000] [1010000][1001000]

[1110000] [1011000] [1101000][1001100] [1010100]

[1111000] [1011100] [1101100] [1001110] [1010110]

[1111100] [1011110][1101110]

[1111110]
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Proof Sketch of Theorem 1
Theorem 1 (Reminder)

The subgraph of the (2n+ 1)-cube induced by the middle four
levels has a Hamilton cycle.

1. Build a cycle factor of the graph.

2. Join cycles by taking symmetric differences with 6-cycles.

Show that all cycles can be joined to a Hamilton cycle.
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Proof Sketch of Theorem 1
Theorem 1 (Reminder)

The subgraph of the (2n+ 1)-cube induced by the middle four
levels has a Hamilton cycle.

Find combinatorial interpretation of cycles in the cycle factor

←→

ordered rooted trees with n+ 2 vertices

Characterize when two cycles can be joined.

• Follow cycle ←→ Do special rotation.

• Join cycle segments ←→ Do pull operation.

Every tree can be transformed to every other tree.

Gregor, Jäger, Mütze, Sawada, Wille Gray codes and symmetric chains 11th July 2018 (ICALP)



Proof Sketch of Theorem 1
Theorem 1 (Reminder)

The subgraph of the (2n+ 1)-cube induced by the middle four
levels has a Hamilton cycle.

Find combinatorial interpretation of cycles in the cycle factor

←→

ordered rooted trees with n+ 2 vertices

Characterize when two cycles can be joined.

• Follow cycle ←→ Do special rotation.

• Join cycle segments ←→ Do pull operation.

Every tree can be transformed to every other tree.
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Open problems

• Analyze the new SCDs to find a combinatorial interpretation
of the resulting cycle factor in order to make progress in the
generalized middle levels conjecture.

• Prove or disprove that the d-cube has bd/2c+ 1 pairwise
edge-disjoint SCDs. (cf. Shearer, Kleitman 79)
• Clearly upper bound

• True for d ≤ 7

• Prove or disprove that almost all cubes have five pairwise
edge-disjoint SCDs. (Smallest open dimension d = 8)
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Thank you!
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