

Gray codes and symmetric chains

Petr Gregor¹ Sven Jäger² Torsten Mütze² Joe Sawada³ Kaja Wille²

¹Univerzita Karlova, Praha

²Technische Universität Berlin

³University of Guelph

International Colloquium on Automata, Languages, and Programming 11th July 2018

Gray codes

Exhaustive listing of a class of combinatorial objects where successive objects differ by a small amount.

Examples

- All bitstrings of length *d* where successive bitstrings differ by a single bitflip. **[Gray 53]**
- All spanning trees of a graph where two successive spanning trees differ by exchanging a single edge. [Cummins 66]
- All triangulations of a regular *n*-gon where successive triangulations differ by a single edge-flip. [Lucas 87]

Applications

- Generate all objects in a combinatorial class quickly (small transformation in each step)
- Error correction, Boolean circuit minimization,

Binary reflected Gray code

Theorem [Gray 53]

For $d \in \mathbb{N}$ there is a cyclic listing of all bitstrings of length d, where two successive bistrings differ in a single bit.

Equivalent: There is a Hamilton cycle in the *d*-cube.

Middle levels theorem

Theorem [Mütze 16]

For $n \in \mathbb{N}$ the subgraph induced by the middle two levels of the (2n + 1)-cube has a Hamilton cycle.

Generalized middle levels conjecture

Conjecture [Savage 93, Gregor, Škrekovski 10, Shen, Williams 15] For $n \in \mathbb{N}$ and $1 \leq \ell \leq n+1$ the subgraph of the (2n+1)-cube induced by the middle 2ℓ levels has a Hamilton cycle.

Known results

Our results

Theorem 1

For $n \in \mathbb{N}$ the subgraph of the (2n + 1)-cube induced by the middle four levels has a Hamilton cycle.

Our results

Theorem 2

For $n \in \mathbb{N}$ and $1 \leq \ell \leq n+1$ the subgraph of the (2n+1)-cube induced by the middle 2ℓ levels has a cycle factor (2-factor), i.e., a spanning 2-regular subgraph.

A cycle factor is often the first step for proving Hamiltonicity.

Gregor, Jäger, Mütze, Sawada, Wille

Gray codes and symmetric chains

11th July 2018 (ICALP)

Known results

Proof of Theorem 2

Theorem 2 (Reminder)

The subgraph of the (2n+1)-cube induced by the middle 2ℓ levels has a cycle factor.

Ingredients

Symmetric chain

Proof of Theorem 2

Theorem 2 (Reminder)

The subgraph of the $(2n+1)\text{-}{\rm cube}$ induced by the middle 2ℓ levels has a cycle factor.

- Q_{2n+1} has two edge-disjoint SCDs. [Shearer, Kleitman 79]
- Restrict to the middle 2ℓ levels.
- Each chain has an odd number of edges.
 ⇒ Taking every second edge from each chain yields two disjoint perfect matchings.
- Their union is a cycle factor.

Edge-disjoint SCDs in the hypercube

Theorem 3

For any $d \ge 12$ the *d*-cube contains four pairwise edge-disjoint SCDs.

Combining any pair of them gives six distinct cycle factors.

Known results

- Q_d has two almost orthogonal SCDs for all $d \ge 2$. [Shearer, Kleitman 79]
- Q_d has three pairwise almost orthogonal SCDs for all $d \ge 24$. [Spink 17]

Edge-disjoint SCDs in the hypercube

Theorem 3

For any $d \ge 12$ the *d*-cube contains four pairwise edge-disjoint SCDs.

Proof structure

- **1.** For even $d \ge 6$ there is a direct construction.
- **2.** Q_7 contains four pairwise edge-disjoint SCDs (ad hoc construction).
- **3.** If Q_a and Q_b contain k pairwise edge-disjoint SCDs, then Q_{a+b} contains k pairwise edge-disjoint SCDs.

Remark The cases d = 6,7 together with Part 3 would establish the claim for all $d \ge 30$.

Product construction of SCDs

Lemma (cf. de Bruijn et al. 51, Spink 17)

Let $a, b, k \in \mathbb{N}$. If Q_a and Q_b each contain k pairwise edge-disjoint SCDs, then $Q_{a+b} \cong Q_a \square Q_b$ contains k pairwise edge-disjoint SCDs.

Edge-disjoint SCDs in the hypercube

Theorem 3

For any $d \ge 12$ the *d*-cube contains four pairwise edge-disjoint SCDs.

Proof structure

- 1. For even $d \ge 6$ there is a direct construction.
- **2.** Q_7 contains four pairwise edge-disjoint SCDs (ad hoc construction).
- **3.** If Q_a and Q_b contain k pairwise edge-disjoint SCDs, then Q_{a+b} contains k pairwise edge-disjoint SCDs.

Proof is based on lexical matchings [Kierstead, Trotter 88] between consecutive levels.

Edge-disjoint SCDs in the hypercube

Theorem 3

For any $d \ge 12$ the *d*-cube contains four pairwise edge-disjoint SCDs.

Proof structure

- **1.** For even $d \ge 6$ there is a direct construction.
- **2.** Q_7 contains four pairwise edge-disjoint SCDs (ad hoc construction).
- **3.** If Q_a and Q_b contain k pairwise edge-disjoint SCDs, then Q_{a+b} contains k pairwise edge-disjoint SCDs.

Four edge-disjoint SCDs in Q_7

Problem Brute force too slow!

Reduce the graph

- Remove the vertices 0000000 and 1111111.
- Combine bitstrings that differ by a rotation to a single vertex representing a *necklace*.
 - \Rightarrow Every necklace contains 7 bitstrings (7 being prime).
- The number of edges between two necklaces [x] and [y] is $|N_{Q_7}(x) \cap [y]| = |[x] \cap N_{Q_7}(y)|.$

Four edge-disjoint SCDs in Q_7

Edge-disjoint SCDs in the reduced multigraph correspond to edge-disjoint SCDs in Q_7 .

Proof Sketch of Theorem 1

Theorem 1 (Reminder)

The subgraph of the (2n+1)-cube induced by the middle four levels has a Hamilton cycle.

- 1. Build a cycle factor of the graph.
- 2. Join cycles by taking symmetric differences with 6-cycles.

Show that all cycles can be joined to a Hamilton cycle.

Proof Sketch of Theorem 1

Theorem 1 (Reminder)

The subgraph of the (2n+1)-cube induced by the middle four levels has a Hamilton cycle.

Find combinatorial interpretation of cycles in the cycle factor

Characterize when two cycles can be joined.

Proof Sketch of Theorem 1

Theorem 1 (Reminder)

The subgraph of the $(2n+1)\mbox{-}cube\ induced\ by\ the\ middle\ four\ levels\ has\ a\ Hamilton\ cycle.$

Find combinatorial interpretation of cycles in the cycle factor

Characterize when two cycles can be joined.

- Follow cycle \longleftrightarrow Do special rotation.
- Join cycle segments \longleftrightarrow Do *pull* operation.

Every tree can be transformed to every other tree.

Open problems

- Analyze the new SCDs to find a combinatorial interpretation of the resulting cycle factor in order to make progress in the generalized middle levels conjecture.
- Prove or disprove that the *d*-cube has $\lfloor d/2 \rfloor + 1$ pairwise edge-disjoint SCDs. (cf. Shearer, Kleitman 79)
 - Clearly upper bound
 - True for $d \leq 7$
- Prove or disprove that almost all cubes have five pairwise edge-disjoint SCDs. (Smallest open dimension d = 8)

Thank you!

Literature

- F. Gray: Pulse code communication, US Patent 2632058, March 1953.
- J. M. Lucas: The rotation graph of binary trees is Hamiltonian, *J. Algorithms*, 8(4):503–535, 1987
- R. Cummnis: Hamilton Circuits in Tree Graphs, *IEEE Trans. Circuit Theory*, 13(1):82–90, 1966
- T. Mütze: Proof of the middle levels conjecture, *Proc. London Math. Soc.*, 112(4):677–713, 2016
- C. D. Savage: Long cycles in the middle two levels of the Boolean lattice, Ars Combin., 35(A):97–108, 1993
- P. Gregor and R. Škrekovski: On generalized middle-level problem, *Inform. Sciences*, 180(12):2448–2457, 2010
- M. El-Hashash and A. Hassan: On the Hamiltonicity of two subgraphs of the hypercube, *SEICCGTC'01*, 7–32, 2001
- S. C. Locke and R. Stong: Spanning Cycles in Hypercubes, *Amer. Math. Monthly*, 110(5):440–441, 2003
- N. G. de Bruijn, C. van Ebbenhorst Tengbergen, and D. Kruyswijk: On the set of divisors of a number, *Nieuw Arch. Wisk.* (2), 23:191–193, 1951
- J. Shearer and D. J. Kleitman: Probabilities of Independent Choices Being Ordered, *Stud. Appl. Math.*, 60(3):271–275, 1979
- H. Spink: Orthogonal Symmetric Chain Decompositions of Hypercubes, arXiv-Preprint, 2017
- H. A. Kierstead and W. T. Trotter: Explicit Matchings in the Middle Levels of the Boolean Lattice, *Order*, 5(2):163–171, 1988