On orthogonal symmetric chain decompositions

Karl Däubel ${ }^{1} \quad$ Sven Jäger ${ }^{1}$
Torsten Mütze ${ }^{2} \quad$ Manfred Scheucher ${ }^{1}$
${ }^{1}$ Technische Universität Berlin
${ }^{2}$ University of Warwick
European Conference on Combinatorics, Graph Theory and Applications
27th August 2019

The n-cube

n-cube Q_{n} : all subsets of $[n]:=\{1, \ldots, n\}$ ordered by inclusion k-th level: all subsets of cardinality k

Chain decompositions

- The n-cube can be decomposed into width $\left(Q_{n}\right)=\binom{n}{\lfloor n / 2\rfloor}$ many chains. [Sperner '28, Dilworth '50]
- In this talk: chain decompositon $=$ decompsition into width $\left(Q_{n}\right)$ many chains.

Orthogonal chain decompositions

Two chain decompositions are orthogonal if every two chains have at most one element in common.

Theorem (Shearer, Kleitman '79)

The n-cube has two orthogonal chain decompositions for $n \geq 2$.

Conjecture (Shearer, Kleitman '79)

The n-cube has $\left\lfloor\frac{n}{2}\right\rfloor+1$ pairwise orthogonal chain decompositions.

Orthogonal chain decompositions

Two chain decompositions are orthogonal if every two chains have at most one element in common.

Theorem (Shearer, Kleitman '79)
The n-cube has two orthogonal chain decompositions for $n \geq 2$.

Conjecture (Shearer, Kleitman '79)

The n-cube has $\left\lfloor\frac{n}{2}\right\rfloor+1$ pairwise orthogonal chain decompositions.

Theorem (Spink '19)

The n-cube has three orthogonal chain decompositions for $n \geq 24$.

Theorem (our main result)

The n-cube has four orthogonal chain decompositions for $n \geq 60$.

Symmetric chain decompositions

A chain is called

- saturated if it does not skip intermediate levels;
- symmetric if it starts at level k and ends at level $n-k$ for some $k \in\{0, \ldots, n\}$.

Theorem (de Bruijn, van Ebbenhorst-Tengbergen, Kruiswijk '51)
The n-cube can be decomposed into saturated, symmetric chains.

Symmetric chain decompositions

A chain is called

- saturated if it does not skip intermediate levels;
- symmetric if it starts at level k and ends at level $n-k$ for some $k \in\{0, \ldots, n\}$.

Theorem (de Bruijn, van Ebbenhorst-Tengbergen, Kruiswijk '51)
The n-cube can be decomposed into saturated, symmetric chains.

- A decomposition into saturated, symmetric chains is called symmetric chain decomposition (SCD).
- The decomposition of de Bruijn et al. is called standard SCD.

Two orthogonal chain decompositions

Theorem (Shearer, Kleitman '79)

The n-cube has two orthogonal chain decompositions for $n \geq 2$.

Proof idea

- Take standard SCD and its complement SCD.

$$
n=4:
$$

- Only the two longest chains have two elements in common.

Two orthogonal chain decompositions

Theorem (Shearer, Kleitman '79)

The n-cube has two orthogonal chain decompositions for $n \geq 2$.

Proof idea

- Take standard SCD and its complement SCD.

- Only the two longest chains have two elements in common. Such SCDs are called almost orthogonal.
- Move \emptyset in one decomposition to a shortest chain.

Almost orthogonal SCDs

Generalization (Spink '19): If Q_{n} has k almost orthogonal SCDs, then Q_{n} has k orthogonal chain decompositions.

Proof: There are enough available shortest chains.

Proposition

The n-cube has four almost orthogonal SCDs for $n \geq 60$.

Why almost orthogonal SCDs?

- much stronger requirements (symmetry, saturatedness)
- allow for product constructions

Product of chain decompositions

- If C_{a} and C_{b} are symmetric, saturated chains in Q_{a} and Q_{b}, then the chains in $C_{a} \square C_{b}$ are symmetric, saturated chains in Q_{a+b}.
- The Cartesian product $\mathcal{D}_{a} \square \mathcal{D}_{b}$ of chain decompositions \mathcal{D}_{a} and \mathcal{D}_{b} consists of the chains in $C_{a} \square C_{b}$ for all pairs $\left(C_{a}, C_{b}\right) \in \mathcal{D}_{a} \times \mathcal{D}_{b}$.

Products of orthogonal chains

$$
\text { If }\left|C_{a}^{(1)} \cap C_{a}^{(2)}\right| \leq 1 \text { and }\left|C_{b}^{(1)} \cap C_{b}^{(2)}\right| \leq 1 \text {, then }
$$

$$
\left|\left(C_{a}^{(1)} \square C_{b}^{(1)}\right) \cap\left(C_{a}^{(2)} \square C_{b}^{(2)}\right)\right| \leq 1
$$

Product of non-symmetric chain decompositions

Problem: The Cartesian product of non-symmetric chain decompositions can have more than width $\left(Q_{a+b}\right)$ chains!

Example:

\rightsquigarrow eight chains, but width $\left(Q_{4}\right)=6$.
Solution: Use symmetric chain decompositions.

Products of two almost orthogonal SCDs

Problem: Chains in the chain product of longest chains may intersect too often.

Example:

Idea: Decompose one chain product differently.

- More complicated for more than two almost orthogonal SCDs.

Products of more than two almost orthogonal SCDs

Theorem (Spink '19)

Let $r \geq 6, n_{1}, \ldots, n_{r} \geq 5$ odd. If each $Q_{n_{i}}, i \in[r]$, has k almost orthogonal SCDs, then $Q_{n_{1}+\cdots+n_{r}}$ has k almost orthogonal SCDs.
\Rightarrow Enough to find almost orthogonal SCDs in n-cubes for small n.

Lemma

Q_{7} and Q_{11} have four almost orthogonal SCDs.

Proposition

The n-cube has four almost orthogonal SCDs for $n \geq 60$.
Proof: Every $n \geq 60$ can be written as $a \cdot 7+b \cdot 11$ with $a+b \geq 6$, so that the result follows from Spink's theorem.

Weaker notion: edge-disjoint SCDs

Two SCDs of the n-cube are edge-disjoint if no two chains have two consecutive elements in common.

Proposition (Gregor, J., Mütze, Sawada, Wille '18)

If $\mathcal{D}_{a}^{(1)}$ and $\mathcal{D}_{a}^{(2)}$ are edge-disjoint and $\mathcal{D}_{b}^{(2)}$ are edge-disjoint, then $\mathcal{D}_{a}^{(1)} \square \mathcal{D}_{b}^{(1)}$ and $\mathcal{D}_{a}^{(2)} \square \mathcal{D}_{b}^{(2)}$ are edge-disjoint.

Weaker notion: edge-disjoint SCDs

Two SCDs of the n-cube are edge-disjoint if no two chains have two consecutive elements in common.

Proposition (Gregor, J., Mütze, Sawada, Wille '18)

If $\mathcal{D}_{a}^{(1)}$ and $\mathcal{D}_{a}^{(2)}$ are edge-disjoint and $\mathcal{D}_{b}^{(2)}$ are edge-disjoint, then $\mathcal{D}_{a}^{(1)} \square \mathcal{D}_{b}^{(1)}$ and $\mathcal{D}_{a}^{(2)} \square \mathcal{D}_{b}^{(2)}$ are edge-disjoint.

Lemma

Q_{10} and Q_{11} have five edge-disjoint SCDs.

Theorem

The n-cube has five edge-disjoint SCDs for $n \geq 90$.
Proof: Every $n \geq 90$ can be written as $a \cdot 10+b \cdot 11$.

SCDs in small dimensions

Problem: Even for small n naive SAT formulation is too large.
Goal: Reduce search space.

- $x, y \in Q_{n}$ are equivalent if they result from each other by a cyclic renaming $x \mapsto(x+1) \bmod n$.
- Equivalence classes are called necklaces, and quotient poset N_{n} is called necklace poset.
- A necklace $\langle x\rangle$ is full if $|\langle x\rangle|=n$, and deficient otherwise.

Example: $n=4$.

- $\langle\{1,3,4\}\rangle=\{\{1,3,4\},\{2,4,1\},\{3,1,2\},\{4,2,3\}\} \quad$ full
- $\langle\{1,3\}\rangle=\{\{1,3\},\{2,4\}\} \quad$ deficient

Unrolling symmetric chains of necklaces

Unrolling symmetric chains of necklaces

A chain in N_{n} is unimodal if its minimal and maximal necklace have the same size and all its other necklaces are full.

A unimodal chain in N_{n} can be unrolled to chains in Q_{n}.

Unrolling symmetric chains of necklaces

When looking for unimodal chains, we can remove some edges.

Unrolling SCDs of necklace poset

An SCD of N_{n} is unimodal if all its chains are unimodal.
Unimodal SCDs in N_{n} can be unrolled to SCDs in Q_{n}.

Unrolling multiple SCDs

- Use multiple edges to represent multiple possibilities to go from one necklace to another.
- Find edge-disjoint unimodal SCDs in the multigraph and try to unroll them to almost orthogonal/edge-disjoint SCDs in Q_{n}.
- If all necklaces are full, edge-disjoint chains in the multigraph yield edge-disjoint chains in Q_{n}.

Multigraph

Example

$$
n=6 .
$$

Using SAT solvers

Formulate problem to find multiple edge-disjoint SCDs in multigraph as propositional formula in conjunctive normal form.

Result: Edge-disjoint SCDs in the multigraph.

- If not unrollable to edge-disjoint/almost orthogonal SCDs of Q_{n}, add clause forbidding particular configuration.
- Incremental SAT solver can reuse structural information about formula after adding new clauses.

Concluding remarks

- To help SAT solver prescribe some known unimodal SCDs of N_{n} (cf. Griggs, Killian, Savage '04; Jordan '10) that can be unrolled to almost-orthogonal/edge-disjoint SCDs.
- Obtained families of SCDs and independent verification program are available online.
- n-cube has four almost orthogonal SCDs for many $n<60$.
- Q_{n} has three almost orthogonal SCDs $\Longleftrightarrow n \geq 5$.
Q_{n} has four edge-disjoint SCDs $\Longleftrightarrow n \geq 6$.

Literature

- E. Sperner: Ein Satz über Untermengen einer endlichen Menge, Math. Z., 27(1):544-548, 1928
- R. P. Dilworth: A Decomposition Theorem for Partially Ordered Sets, Ann. of Math. (2), 51:161-166, 1950
- J. Shearer and D. J. Kleitman: Probabilities of Independent Choices Being Ordered, Stud. Appl. Math., 60(3):271-275, 1979
- H. Spink: Orthogonal Symmetric Chain Decompositions of Hypercubes, SIAM J. Discrete Math., 33(2):910-932, 2019
- N. G. de Bruijn, C. van Ebbenhorst Tengbergen, and D. Kruyswijk: On the set of divisors of a number, Nieuw Arch. Wisk. (2), 23:191-193, 1951
- P. Gregor, S. Jäger, T. Mütze, J. Sawada, and K. Wille: Gray Codes and Symmetric Chains, ICALP '18, 2018
- J. Griggs, C. E. Killian, and C. D. Savage: Venn Diagrams and Symmetric Chain Decompositions in the Boolean Lattice, Electron. J. Combin., 11:\#R2, 2004
- K. K. Jordan: The necklace poset is a symmetric chain order, J. Combin. Theory Ser. A, 117(6):625-641, 2010

Additional Slides

Proof of upper bound on number of orthogonal chain decompositions

Edge-disjoint SCDs that are not unrollable to edge-disjoint SCDs

Numbers of SCDs in small dimensions

Orthogonal chain decompositions

Two chain decompositions are orthogonal if every two chains have at most one element in common.

Theorem (Shearer, Kleitman '79)

The n-cube has two orthogonal chain decompositions for $n \geq 2$.

Conjecture (Shearer, Kleitman '79)

The n-cube has $\left\lfloor\frac{n}{2}\right\rfloor+1$ pairwise orthogonal chain decompositions.

Edge-disjoint SCDs in N_{8} that are not unrollable to edge-disjoint SCDs in Q_{8}

Small dimensions

n	1	2	3	4	5	6	7	8	9	10	11
almost-orthogonal SCDs	1	2	2	2	3	3^{*}	4^{*}	3^{*}	3^{*}	3	4^{*}
edge-disjoint SCDs	1	2	2	3	3	4	4	4	4^{*}	5^{*}	6^{*}

\ldots| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 3^{*} | 4^{*} | 3 | 3^{*} | 3 | 4^{*} | 3 | 3 | 4^{*} | 4^{*} | 3^{*} | 3 | 4^{*} |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5^{*} | 5^{*} | 6^{*} | 4 | 4 | 4 |
| 7 | 7 | 8 | 8 | 9 | 9 | 10 | 10 | 11 | 11 | 12 | 12 | 13 | 13 |

