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The n-cube

n-cube Qn: all subsets of [n] := {1, . . . , n} ordered by inclusion

k-th level: all subsets of cardinality k
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Chain decompositions

• The n-cube can be decomposed into width(Qn) =
(

n
bn/2c

)
many chains. [Sperner ’28, Dilworth ’50]

• In this talk: chain decompositon = decompsition into
width(Qn) many chains.
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Orthogonal chain decompositions

Two chain decompositions are orthogonal if every two chains have
at most one element in common.

Theorem (Shearer, Kleitman ’79)

The n-cube has two orthogonal chain decompositions for n ≥ 2.

Conjecture (Shearer, Kleitman ’79)

The n-cube has bn2 c+ 1 pairwise orthogonal chain decompositions.
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Orthogonal chain decompositions

Two chain decompositions are orthogonal if every two chains have
at most one element in common.

Theorem (Shearer, Kleitman ’79)

The n-cube has two orthogonal chain decompositions for n ≥ 2.

Conjecture (Shearer, Kleitman ’79)

The n-cube has bn2 c+ 1 pairwise orthogonal chain decompositions.

Theorem (Spink ’19)

The n-cube has three orthogonal chain decompositions for n ≥ 24.

Theorem (our main result)

The n-cube has four orthogonal chain decompositions for n ≥ 60.
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Symmetric chain decompositions

A chain is called

• saturated if it does not skip intermediate levels;

• symmetric if it starts at level k and ends at level n− k for
some k ∈ {0, . . . , n}.

Theorem (de Bruijn, van Ebbenhorst-Tengbergen, Kruiswijk ’51)

The n-cube can be decomposed into saturated, symmetric chains.
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Symmetric chain decompositions

A chain is called

• saturated if it does not skip intermediate levels;

• symmetric if it starts at level k and ends at level n− k for
some k ∈ {0, . . . , n}.

Theorem (de Bruijn, van Ebbenhorst-Tengbergen, Kruiswijk ’51)

The n-cube can be decomposed into saturated, symmetric chains.

• A decomposition into saturated, symmetric chains is called
symmetric chain decomposition (SCD).

• The decomposition of de Bruijn et al. is called standard SCD.
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Two orthogonal chain decompositions

Theorem (Shearer, Kleitman ’79)

The n-cube has two orthogonal chain decompositions for n ≥ 2.

Proof idea

• Take standard SCD and its complement SCD.

n = 4 :

{2}
{2,3}
{2,3,4}

{1}
{1,4}
{1,3,4}

• Only the two longest chains have two elements in common.

• Move ∅ in one decomposition to a shortest chain.
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Two orthogonal chain decompositions

Theorem (Shearer, Kleitman ’79)

The n-cube has two orthogonal chain decompositions for n ≥ 2.

Proof idea

• Take standard SCD and its complement SCD.

• Only the two longest chains have two elements in common.
Such SCDs are called almost orthogonal.

• Move ∅ in one decomposition to a shortest chain.
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Almost orthogonal SCDs

Generalization (Spink ’19): If Qn has k almost orthogonal
SCDs, then Qn has k orthogonal chain decompositions.

Proof: There are enough available shortest chains.

Proposition

The n-cube has four almost orthogonal SCDs for n ≥ 60.

Why almost orthogonal SCDs?

• much stronger requirements (symmetry, saturatedness)

• allow for product constructions
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Product of chain decompositions

Ca

�

Cb

=

Ca � Cb

• If Ca and Cb are symmetric, saturated chains in Qa and Qb,
then the chains in Ca � Cb are symmetric, saturated chains in
Qa+b.

• The Cartesian product Da �Db of chain decompositions Da

and Db consists of the chains in Ca � Cb for all pairs
(Ca, Cb) ∈ Da ×Db.
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Products of orthogonal chains

C
(1)
a C
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a
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b
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∣∣C(1)

a ∩ C
(2)
a

∣∣ ≤ 1 and
∣∣C(1)

b ∩ C
(2)
b

∣∣ ≤ 1, then∣∣(C(1)
a � C

(1)
b ) ∩ (C(2)

a � C
(2)
b )

∣∣ ≤ 1.
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Product of non-symmetric chain decompositions

Problem: The Cartesian product of non-symmetric chain
decompositions can have more than width(Qa+b) chains!

Example:

� =

 eight chains, but width(Q4) = 6.

Solution: Use symmetric chain decompositions.
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Products of two almost orthogonal SCDs

Problem: Chains in the chain product of longest chains may
intersect too often.

Example:

� =

C
(1)
a

C
(2)
a C

(1)
b

C
(2)
b

C
(1)
a � C

(1)
b

C
(2)
a � C

(2)
b

Idea: Decompose one chain product differently.

• More complicated for more than two almost orthogonal SCDs.
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Products of more than two almost orthogonal SCDs

Theorem (Spink ’19)

Let r ≥ 6, n1, . . . , nr ≥ 5 odd. If each Qni , i ∈ [r], has k almost
orthogonal SCDs, then Qn1+···+nr has k almost orthogonal SCDs.

⇒ Enough to find almost orthogonal SCDs in n-cubes for small n.

Lemma

Q7 and Q11 have four almost orthogonal SCDs.

Proposition

The n-cube has four almost orthogonal SCDs for n ≥ 60.

Proof: Every n ≥ 60 can be written as a · 7 + b · 11 with
a+ b ≥ 6, so that the result follows from Spink’s theorem.
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Weaker notion: edge-disjoint SCDs
Two SCDs of the n-cube are edge-disjoint if no two chains have
two consecutive elements in common.

Proposition (Gregor, J., Mütze, Sawada, Wille ’18)

If D(1)
a and D(2)

a are edge-disjoint and D(2)
b are edge-disjoint, then

D(1)
a �D(1)

b and D(2)
a �D(2)

b are edge-disjoint.
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Weaker notion: edge-disjoint SCDs
Two SCDs of the n-cube are edge-disjoint if no two chains have
two consecutive elements in common.

Proposition (Gregor, J., Mütze, Sawada, Wille ’18)

If D(1)
a and D(2)

a are edge-disjoint and D(2)
b are edge-disjoint, then

D(1)
a �D(1)

b and D(2)
a �D(2)

b are edge-disjoint.

Lemma

Q10 and Q11 have five edge-disjoint SCDs.

Theorem

The n-cube has five edge-disjoint SCDs for n ≥ 90.

Proof: Every n ≥ 90 can be written as a · 10 + b · 11.
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SCDs in small dimensions

Problem: Even for small n naive SAT formulation is too large.

Goal: Reduce search space.

• x, y ∈ Qn are equivalent if they result from each other by a
cyclic renaming x 7→ (x+ 1) mod n.

• Equivalence classes are called necklaces, and quotient
poset Nn is called necklace poset.

• A necklace 〈x〉 is full if |〈x〉| = n, and deficient otherwise.

Example: n = 4.

•
〈
{1,3,4}

〉
=

{
{1,3,4}, {2,4,1}, {3,1,2}, {4,2,3}

}
full

◦
〈
{1,3}

〉
=

{
{1,3}, {2,4}

}
deficient
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Unrolling symmetric chains of necklaces

〈∅〉

〈{1}〉

〈{1,2}〉 〈{1,3}〉

〈{1,2,4}〉

〈{1,2,3,4}〉
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Unrolling symmetric chains of necklaces

〈∅〉

〈{1}〉

〈{1,2}〉 〈{1,3}〉

〈{1,2,3}〉

〈{1,2,3,4}〉

∅

{4}{3}

{3,4}

{2}

{2,4}{2,3}

{2,3,4}

{1}

{1,4}{1,3}

{1,3,4}

{1,2}

{1,2,4}{1,2,3}

{1,2,3,4}

A chain in Nn is unimodal if its minimal and maximal necklace have
the same size and all its other necklaces are full.

A unimodal chain in Nn can be unrolled to chains in Qn.
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Unrolling symmetric chains of necklaces

〈∅〉

〈{1}〉

〈{1,2}〉 〈{1,3}〉

〈{1,2,4}〉

〈{1,2,3,4}〉

∅

{4}{3}

{3,4}

{2}

{2,4}{2,3}

{2,3,4}

{1}

{1,4}{1,3}

{1,3,4}

{1,2}

{1,2,4}{1,2,3}

{1,2,3,4}

When looking for unimodal chains, we can remove some edges.
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Unrolling SCDs of necklace poset

〈∅〉

〈{1}〉

〈{1,2}〉 〈{1,3}〉

〈{1,2,4}〉

〈{1,2,3,4}〉

∅

{4}{3}

{3,4}

{2}

{2,4}{2,3}

{2,3,4}

{1}

{1,4}{1,3}

{1,3,4}

{1,2}

{1,2,4}{1,2,3}

{1,2,3,4}

An SCD of Nn is unimodal if all its chains are unimodal.

Unimodal SCDs in Nn can be unrolled to SCDs in Qn.
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Unrolling multiple SCDs

〈∅〉

〈{1}〉

〈{1,2}〉

∅

{1} {2}

{1,2}

• Use multiple edges to represent multiple possibilities to go
from one necklace to another.

• Find edge-disjoint unimodal SCDs in the multigraph and try to
unroll them to almost orthogonal/edge-disjoint SCDs in Qn.

• If all necklaces are full, edge-disjoint chains in the multigraph
yield edge-disjoint chains in Qn.
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Multigraph
Example

n = 6.

〈{1,2,3,4,5,6}〉

〈{1,2,3,4,5}〉

〈{1,2,4,5}〉〈{1,2,3,5}〉

〈{1,3,5}〉

〈{1,2,3,4}〉

〈{1,2,4}〉〈{1,2,5}〉

〈{1}〉

〈∅〉

〈{1,2,3}〉

〈{1,2}〉
〈{1,3}〉 〈{1,4}〉
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Using SAT solvers

Formulate problem to find multiple edge-disjoint SCDs in
multigraph as propositional formula in conjunctive normal form.

Result: Edge-disjoint SCDs in the multigraph.

• If not unrollable to edge-disjoint/almost orthogonal SCDs of
Qn, add clause forbidding particular configuration.

• Incremental SAT solver can reuse structural information about
formula after adding new clauses.
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Concluding remarks

• To help SAT solver prescribe some known unimodal SCDs of
Nn (cf. Griggs, Killian, Savage ’04; Jordan ’10) that can be
unrolled to almost-orthogonal/edge-disjoint SCDs.

• Obtained families of SCDs and independent verification
program are available online.

• n-cube has four almost orthogonal SCDs for many n < 60.

• Qn has three almost orthogonal SCDs ⇐⇒ n ≥ 5.

Qn has four edge-disjoint SCDs ⇐⇒ n ≥ 6.
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� =

C
(1)
a

C
(2)
a C

(1)
b

C
(2)
b

C
(1)
a � C

(1)
b

C
(2)
a � C

(2)
b

Thank you!
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Additional Slides

Proof of upper bound on number of orthogonal chain
decompositions

Edge-disjoint SCDs that are not unrollable to edge-disjoint
SCDs

Numbers of SCDs in small dimensions
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Orthogonal chain decompositions

Two chain decompositions are orthogonal if every two chains have
at most one element in common.

Theorem (Shearer, Kleitman ’79)

The n-cube has two orthogonal chain decompositions for n ≥ 2.

Conjecture (Shearer, Kleitman ’79)

The n-cube has bn2 c+ 1 pairwise orthogonal chain decompositions.

∅

{4}{3}

{3,4}

{2}

{2,4}{2,3}

{2,3,4}

{1}

{1,4}{1,3}

{1,3,4}

{1,2}

{1,2,4}{1,2,3}

{1,2,3,4}
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Edge-disjoint SCDs in N8 that are not unrollable to
edge-disjoint SCDs in Q8

〈{1,5}〉

〈{1,2,5}〉

〈{1,2,3,5}〉

〈{1,2,5,7}〉

〈{1,2,3,5,6}〉

〈{1,2,3,5,6,7}〉

{1,5} {2,6}

{3,7} {4,8}

{1,2,5}

{1,4,8}

{1,5,6} {2,3,6} {2,6,7}

{3,4,7} {3,7,8} {4,5,8}

{1,2,3,5}

{1,2,4,8}

{1,2,5,7}

{1,3,4,7}

{1,3,5,6}

{1,3,7,8}

{1,4,6,8}

{1,5,6,7}

{2,3,4,6}

{2,3,6,8}

{2,4,5,8}

{2,4,6,7}

{2,6,7,8}

{3,4,5,7} {3,5,7,8} {4,5,6,8}

{1,2,3,5,6}

{1,2,4,5,8}

{1,2,5,6,7}

{1,3,4,7,8} {1,4,5,6,8}

{2,3,4,6,7}{2,3,6,7,8}

{3,4,5,7,8}

{1,2,3,5,6,7}

{1,2,4,5,6,8}{1,3,4,5,7,8}

{2,3,4,6,7,8}
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Small dimensions

n 1 2 3 4 5 6 7 8 9 10 11

almost-orthogonal SCDs 1 2 2 2 3 3* 4* 3* 3* 3 4*

edge-disjoint SCDs 1 2 2 3 3 4 4 4 4* 5* 6*

upper bound bn/2c+ 1 1 2 2 3 3 4 4 5 5 6 6

· · ·

· · ·

12 13 14 15 16 17 18 19 20 21 22 23 24 25

3 3* 4* 3 3* 3 4* 3 3 4* 4* 3* 3 4*

4 4 4 4 4 4 4 4 5* 5* 6* 4 4 4

7 7 8 8 9 9 10 10 11 11 12 12 13 13
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