

Scheduling Stochastic Jobs with Release Dates on a Single Machine

Sven Jäger

Combinatorial Optimization and Graph Algorithms

Dagstuhl Seminar Scheduling February 18, 2020

Deterministic Problem $1|r_j| \sum w_j C_j$

Given: processing times p_j , release dates r_j , and weights w_j of jobs j = 1, ..., n,

Task: schedule jobs non-preemptively so that $\sum_{j=1}^{n} w_j C_j$ is minimal.

Deterministic Problem $1|r_j| \sum w_j C_j$

Given: processing times p_j , release dates r_j , and weights w_j of jobs j = 1, ..., n,

Task: schedule jobs non-preemptively so that $\sum_{j=1}^{n} w_j C_j$ is minimal.

Given: distributions of random processing times p_j , release dates r_j , and weights w_j of jobs j = 1, ..., n,

Given: distributions of random processing times p_j , release dates r_j , and weights w_j of jobs j = 1, ..., n,

Given: distributions of random processing times p_j , release dates r_j , and weights w_j of jobs j = 1, ..., n,

Given: distributions of random processing times p_j , release dates r_j , and weights w_j of jobs j = 1, ..., n,

Given: distributions of random processing times p_j , release dates r_j , and weights w_j of jobs j = 1, ..., n,

- When a job is released, its weight and its processing time distribution become known.
- Actual processing time of a job becomes known when it completes.

- When a job is released, its weight and its processing time distribution become known.
- Actual processing time of a job becomes known when it completes.

- When a job is released, its weight and its processing time distribution become known.
- Actual processing time of a job becomes known when it completes.

- When a job is released, its weight and its processing time distribution become known.
- Actual processing time of a job becomes known when it completes.

- When a job is released, its weight and its processing time distribution become known.
- Actual processing time of a job becomes known when it completes.

- When a job is released, its weight and its processing time distribution become known.
- Actual processing time of a job becomes known when it completes.

- When a job is released, its weight and its processing time distribution become known.
- Actual processing time of a job becomes known when it completes.

- When a job is released, its weight and its processing time distribution become known.
- Actual processing time of a job becomes known when it completes.

- When a job is released, its weight and its processing time distribution become known.
- Actual processing time of a job becomes known when it completes.

Performance of Randomized Stochastic Online Policy Π

$$\sup_{\mathbb{P}_{\boldsymbol{p}},r,w} \frac{\mathsf{E}_{\boldsymbol{p},\boldsymbol{\Pi}}\left[\sum_{j=1}^{n} w_{j} \cdot \boldsymbol{C}_{j}^{\boldsymbol{\Pi}}\right]}{\mathsf{E}_{\boldsymbol{p}}\left[\sum_{j=1}^{n} w_{j} \cdot \boldsymbol{C}_{j}^{\boldsymbol{\Pi}^{*}}\right]}$$

Adversarial policy **Π**[∗]

- knows all processing time distributions, release dates, and weights at the beginning,
- learns the actual processing time of a job when it completes.
- $\implies \Pi^*$ is optimal solution to stochastic offline problem.

Schulz' Randomized Stochastic Online Policy (2008)

- Virtually construct preemptive WSPT schedule for deterministic counterparts with p_j := E[p_j].
- The α -point of a job is the first point in time at which an α -fraction of its deterministic counterpart has been completed in the virtual schedule.
- Draw $\alpha_j \in (0,1]$ for all jobs j independently.

Randomized Stochastic Online Scheduling (RSOS)

Whenever α_j -point of a job j is reached, append j to a queue.

Whenever the actual machine is idle and the queue is non-empty, start first job from queue.

Schulz: Draw α_j according to uniform distribution.

Sven Jäger

 $1|r_i$ online $|\mathsf{E}[\sum w_i C_i]$

Known jobs

Deterministic counterparts

 $1|r_j$ online $|\mathbf{E}[\sum w_j \mathbf{C}_j]$

Known jobs

$1 \overset{Pr[\boldsymbol{p}_j \geq t]}{\blacksquare}$	$\alpha_1 = 0.33$
	$\alpha_2 = 0.63$

Deterministic counterparts

 $1|r_i$ online $E[\sum w_i C_i]$

Known jobs

$1 \overset{Pr[\boldsymbol{p}_j \geq t]}{\blacksquare}$	$\alpha_1 = 0.33$
	$\alpha_2 = 0.63$

Deterministic counterparts

Known jobs

Deterministic counterparts

Known jobs

Deterministic counterparts

 $1|r_i \text{ online}|\mathbf{E}[\sum w_j C_j]$

Known jobs

Deterministic counterparts

Known jobs

Deterministic counterparts

Sven Jäger

Known jobs

Deterministic counterparts

Queue

Known jobs

Deterministic counterparts

Known jobs

Deterministic counterparts

Actual schedule

Known jobs

Deterministic counterparts

 $1|r_i$ online $|\mathsf{E}[\sum w_i C_i]$

Known jobs

Deterministic counterparts

 $1|r_i$ online $|\mathsf{E}[\sum w_i C_i]$

Scheduling 2020

Known jobs

Deterministic counterparts

4 1

Queue

Known jobs

$\Pr[\mathbf{p}_j \geq t]$	
	$\alpha_1 = 0.33$
	t

Deterministic counterparts

Known jobs

$$1 \underbrace{\Pr[\boldsymbol{p}_j \geq t]}_{t} \quad \alpha_1 = 0.33$$

Deterministic counterparts

 $1|r_i$ online $E[\sum w_i C_i]$

Known jobs

Deterministic counterparts

Result

The processing times are δ -NBUE if

$$\mathsf{E}[\boldsymbol{p}_j - t \mid \boldsymbol{p}_j > t] \leq \delta \cdot \mathsf{E}[\boldsymbol{p}_j]$$

for all $t \geq 0$ and $j = 1, \ldots, n$.

Proposition

If the processing times are δ -NBUE and the α_j are chosen according to a distribution with density function f such that for all $x \in (0, 1]$

$$\begin{aligned} & \text{i} \quad \int_0^x \frac{\delta}{\delta + x - \alpha} \cdot f(\alpha) \, \mathrm{d}\alpha \leq (c - 1) \cdot x, \\ & \text{ii} \quad \left(1 + \int_0^1 \frac{\delta}{\delta + 1 - \alpha} \cdot f(\alpha) \, \mathrm{d}\alpha \right) \cdot \int_{1 - x}^1 f(\alpha) \, \mathrm{d}\alpha \leq c \cdot x, \end{aligned}$$

for some c > 1, then RSOS is c-competitive.

Remark: Uniform distribution yields c = 2.

Sven Jäger

Proof Ideas

Let M_j be the mean busy time of job j in the virtual schedule.

For every policy Π it holds that

$$\sum_{j=1}^n w_j \cdot \mathsf{E}[\boldsymbol{C}_j^{\boldsymbol{\Pi}}] \geq \sum_{j=1}^n w_j \cdot (M_j + \mathsf{E}[\boldsymbol{p}_j]/2).$$

(similar to Schulz (2008))

Partition completion time of job j under RSOS into

- start time in virtual schedule,
- delay $\alpha_j \cdot E[\mathbf{p}_j]$ caused by partially processing j in virtual schedule,
- delay caused by jobs started before j in virtual schedule,
- delay caused by jobs interrupting j in virtual schedule,
- processing time p_j.

(similar to Goemans, Queyranne, Schulz, Skutella, and Wang (2002))

Bound the expected values separately, resulting in

$$\mathsf{E}[\boldsymbol{C}_{j}^{\mathsf{RSOS}}] \leq c \cdot (M_{j} + \mathsf{E}[\boldsymbol{p}_{j}]/2).$$

 $1|r_i$ online $|E[\sum w_i C_i]$

The End

Numeric Computations

For $\delta = 1$ (NBUE) the following density function yields competitive ratio smaller than 1.783.

Derandomization

RSOS can be transformed to a deterministic offline policy.

Thank you!

 $1|r_j$ online $|\mathbb{E}[\sum w_j C_j]$

References

- A. S. Schulz: Stochastic Online Scheduling Revisited, COCOA 2008
- M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang: Single Machine Scheduling with Release Dates, SIAM J. Discrete Math., 15(2):165–192, 2002

Known and New Upper Bounds

	approximation algorithm		rand. online algorithm		det. online algorithm	
	1	P	1	Р	1	P
deterministic processing times		$1 + \varepsilon^1$	1.686 ²	$2 - o_m(1)^{3,4}$	2 ⁵	2.62^4 1.791 + $o_m(1)^6$
stochastic processing times	\$ ⁷	$3-\frac{1}{m}+\max\{1,\frac{m-1}{m}\Delta\}^{7}$	2 1.783 for $\delta = 1$	$2 + \Delta^8$	$\phi + 1$ 2+ δ^9	$\max\{\phi+1, \frac{\phi+1}{2} \cdot \Delta + \frac{\phi+3}{2}\}^{8}$ $\frac{3}{2} + \delta \frac{2m-1}{2m} + \frac{\sqrt{4\delta^{2}+1}}{2}^{9}$

$$\Delta = \max_{j \in \{1,...,n\}} \frac{\operatorname{Var}[\boldsymbol{p}_j]}{\mathsf{E}[\boldsymbol{p}_j]^2}$$

$$\delta = \max_{j \in \{1,...,n\}} \sup \left\{ \frac{\mathsf{E}[\boldsymbol{p}_j - t \mid \boldsymbol{p}_j \ge t]}{\mathsf{E}[\boldsymbol{p}_j]} \mid t \ge 0, \ \mathsf{Pr}[\boldsymbol{p}_j \ge t] > 0 \right\}$$

Remarks: $\delta > 1$, $\Delta < 2 \cdot \delta - 1$.

• $\delta = 1$: NBUE processing times

1: Afrati et al. 1999; 2: Goemans et al. 2002; 3: Schulz & Skutella 2002,

4: Correa & Wagner 2009; 5: Anderson & Potts 2004; 6: Sitters 2010;

7: Möhring, Schulz, & Uetz 1999; 8: Schulz 2008; 9: Megow, Uetz, & Vredeveld 2006