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Deterministic Problem 1|rj |
∑

wjCj

Given: processing times pj , release dates rj , and weights wj of
jobs j = 1, . . . , n,

Task: schedule jobs non-preemptively so that
∑n

j=1 wjCj is minimal.
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Stochastic Problem 1|rj |E [
∑

wjCj ]

Given: distributions of random processing times pj , release dates rj , and
weights wj of jobs j = 1, . . . , n,

Task: find non-preemptive scheduling policy minimizing E
[∑n

j=1 wjCj

]
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Stochastic Online Problem 1|rj online|E [
∑

wjCj ]

I When a job is released, its weight and its processing time distribution
become known.

I Actual processing time of a job becomes known when it completes.
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Performance of Randomized Stochastic Online Policy Π

sup
Pp ,r ,w

Ep,Π

[∑n
j=1 wj · CΠ

j

]
Ep

[∑n
j=1 wj · CΠ∗

j

]

Adversarial policy Π∗

I knows all processing time distributions, release dates, and weights at
the beginning,

I learns the actual processing time of a job when it completes.

=⇒ Π∗ is optimal solution to stochastic offline problem.
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Schulz’ Randomized Stochastic Online Policy (2008)

I Virtually construct preemptive WSPT schedule for deterministic
counterparts with pj := E[pj ].

I The α-point of a job is the first point in time at which an α-fraction
of its deterministic counterpart has been completed in the virtual
schedule.

I Draw αj ∈ (0, 1] for all jobs j independently.

Randomized Stochastic Online Scheduling (RSOS)

Whenever αj -point of a job j is reached, append j to a queue.

Whenever the actual machine is idle and the queue is non-empty, start first
job from queue.

Schulz: Draw αj according to uniform distribution.
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Example with unit weights
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Result

The processing times are δ-NBUE if

E[pj − t | pj > t] ≤ δ · E[pj ]

for all t ≥ 0 and j = 1, . . . , n.

Proposition

If the processing times are δ-NBUE and the αj are chosen according to a
distribution with density function f such that for all x ∈ (0, 1]

i
∫ x
0

δ
δ+x−α · f (α) dα ≤ (c − 1) · x ,

ii
(
1 +

∫ 1
0

δ
δ+1−α · f (α) dα

)
·
∫ 1
1−x f (α) dα ≤ c · x ,

for some c > 1, then RSOS is c-competitive.

Remark: Uniform distribution yields c = 2.
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Proof Ideas
Let Mj be the mean busy time of job j in the virtual schedule.
I For every policy Π it holds that

n∑
j=1

wj · E[CΠ
j ] ≥

n∑
j=1

wj · (Mj + E[pj ]/2).

(similar to Schulz (2008))

I Partition completion time of job j under RSOS into
I start time in virtual schedule,
I delay αj ·E[pj ] caused by partially processing j in virtual schedule,
I delay caused by jobs started before j in virtual schedule,
I delay caused by jobs interrupting j in virtual schedule,
I processing time pj .

(similar to Goemans, Queyranne, Schulz, Skutella, and Wang (2002))

I Bound the expected values separately, resulting in

E[CRSOS
j ] ≤ c · (Mj + E[pj ]/2).
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The End
Numeric Computations
For δ = 1 (NBUE) the following density function yields competitive ratio
smaller than 1.783.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2
0.4
0.6
0.8
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1.2
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Derandomization
RSOS can be transformed to a deterministic offline policy.

Thank you!
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Known and New Upper Bounds

approximation algorithm rand. online algorithm det. online algorithm
1 P 1 P 1 P

deterministic
processing
times

1 + ε1 1.6862 2− om(1)3,4 25 2.624

1.791 + om(1)6

stochastic
processing
times

�3
7 3− 1

m
+max{1, m−1

m
∆}7 2

1.783 for
δ = 1

2 + ∆8 φ + 1

��2 + δ9

max{φ+1, φ+1
2 ·∆+ φ+3

2 }
8

3
2 + δ 2m−1

2m +

√
4δ2+1
2

9

∆ = max
j∈{1,...,n}

Var[pj ]

E[pj ]2

δ = max
j∈{1,...,n}

sup

{
E[pj − t | pj ≥ t]

E[pj ]

∣∣∣∣ t ≥ 0, Pr[pj ≥ t] > 0
}

Remarks: δ ≥ 1, ∆ ≤ 2 · δ − 1.

I δ = 1: NBUE processing times

1: Afrati et al. 1999; 2: Goemans et al. 2002; 3: Schulz & Skutella 2002,
4: Correa & Wagner 2009; 5: Anderson & Potts 2004; 6: Sitters 2010;
7: Möhring, Schulz, & Uetz 1999; 8: Schulz 2008; 9: Megow, Uetz, & Vredeveld 2006
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