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Deterministic Problem 1|rj| >~ w;C;

Given: processing times p;, release dates r;, and weights w; of
jobs j=1,...,n,
Task: schedule jobs non-preemptively so that > 7_; w;C; is minimal.
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Stochastic Problem 1|r;|E > w;Cj]

Given: distributions of random processing times p;, release dates r;, and
weights w; of jobs j=1,...,n,

Task: find non-preemptive scheduling policy minimizing E [Z}’Zl WJC}}
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Stochastic Online Problem 1|r; online|E [ w;Cj]

> When a job is released, its weight and its processing time distribution
become known.

» Actual processing time of a job becomes known when it completes.
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Performance of Randomized Stochastic Online Policy IT

Epx [Z_?:l wj CJH}
sup -
Fprw Ep [Ef:l w; - Cjn }

Adversarial policy I1*

> knows all processing time distributions, release dates, and weights at
the beginning,
> learns the actual processing time of a job when it completes.

— [1* is optimal solution to stochastic offline problem.



Schulz' Randomized Stochastic Online Policy (2008)

» Virtually construct preemptive WSPT schedule for deterministic
counterparts with p; := E[p;].

» The a-point of a job is the first point in time at which an a-fraction
of its deterministic counterpart has been completed in the virtual
schedule.

» Draw «; € (0, 1] for all jobs j independently.

Randomized Stochastic Online Scheduling (RSOS)
Whenever aj-point of a job j is reached, append j to a queue.

Whenever the actual machine is idle and the queue is non-empty, start first
job from queue.

Schulz: Draw a; according to uniform distribution.
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Result

The processing times are 0-NBUE if

Elpj —t[pj > 1] <4-Elpj

forallt>0andj=1,...,n

Proposition

If the processing times are 6-NBUE and the aj are chosen according to a
distribution with density function f such that for all x € (0, 1]

[ | f())(5+)‘f_a-f(a)da<(c—1)-x
i <1+f01 5+f_a oz)da) fl a)da < ¢ - x,

for some ¢ > 1, then RSOS is c-competitive.

Remark: Uniform distribution yields ¢ = 2.



Proof Ideas
Let M; be the mean busy time of job j in the virtual schedule.
» For every policy I it holds that

ij E[C]'] > ij (M; + Elpj1/2).

Jj=1
(similar to Schulz (2008))

» Partition completion time of job j under RSOS into
» start time in virtual schedule,
» delay o - E[p;] caused by partially processing j in virtual schedule,
» delay caused by jobs started before j in virtual schedule,
» delay caused by jobs interrupting j in virtual schedule,
> processing time p;.
(similar to Goemans, Queyranne, Schulz, Skutella, and Wang (2002))

» Bound the expected values separately, resulting in

E[CR398] < c- (M; + E[pj]/2).



The End

Numeric Computations
For 6 =1 (NBUE) the following density function yields competitive ratio
smaller than 1.783.
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Derandomization
RSOS can be transformed to a deterministic offline policy.

Thank youl
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Known and New Upper Bounds

approximation algorithm

rand. online algorithm

det. online algorithm
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Remarks: 6 >1, A <2.§-1.

Elpj — t|pj > 1]

Elpj]

> § = 1: NBUE processing times

1: Afrati et al. 1999;
4: Correa & Wagner 2009;
7: Méhring, Schulz, & Uetz 1999;

2: Goemans et al. 2002;
5: Anderson & Potts 2004;
8: Schulz 2008;

t >0, Pr[p; > t] >0}

3: Schulz & Skutella 2002,

6: Sitters 2010;
9: Megow, Uetz, & Vredeveld 2006
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