
Simple Approximation Algorithms for
Minimizing the Total Weighted Completion Time

of Precedence-Constrained Jobs
Sven Jäger Philipp Warode

Symposium on Simplicity of Algorithms | 08 January 2024 | Alexandria, Virginia

Simple Approximation Algorithms for
Minimizing the Total Weighted Completion Time

of Precedence-Constrained Jobs
Sven Jäger Philipp Warode

Symposium on Simplicity of Algorithms | 08 January 2024 | Alexandria, Virginia

Minimizing the Total Weighted Completion Time
Given: set N of n jobs with processing times pj > 0 and weights wj > 0;

Task: schedule the jobs on a single machine so that the sum of weighted
completion times

P
j∈J wjCj is minimized.

wj = 1

wj = 2

wj = 1

wj = 1

wj = 1wj = 2 wj = 1 wj = 1

time
CtealCviolet Cblue Cgreen

total area =
X
j∈N

wjCj

minimized if jobs are ordered
by Smith ratio wj=pj

wteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 2 / 18

Minimizing the Total Weighted Completion Time
Given: set N of n jobs with processing times pj > 0 and weights wj > 0;
Task: schedule the jobs on a single machine so that the sum of weighted

completion times
P

j∈J wjCj is minimized.

wj = 1wj = 2 wj = 1 wj = 1

time
CtealCviolet Cblue Cgreen

total area =
X
j∈N

wjCj

minimized if jobs are ordered
by Smith ratio wj=pj

wteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 2 / 18

Minimizing the Total Weighted Completion Time
Given: set N of n jobs with processing times pj > 0 and weights wj > 0;
Task: schedule the jobs on a single machine so that the sum of weighted

completion times
P

j∈J wjCj is minimized.

wj = 1wj = 2 wj = 1 wj = 1

time
CtealCviolet Cblue Cgreen

total area =
X
j∈N

wjCj

minimized if jobs are ordered
by Smith ratio wj=pj

wteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 2 / 18

Minimizing the Total Weighted Completion Time
Given: set N of n jobs with processing times pj > 0 and weights wj > 0;
Task: schedule the jobs on a single machine so that the sum of weighted

completion times
P

j∈J wjCj is minimized.

wj = 1wj = 2 wj = 1 wj = 1

time
CtealCviolet Cblue Cgreen

total area =
X
j∈N

wjCj

minimized if jobs are ordered
by Smith ratio wj=pjwteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 2 / 18

Simple Approximation Algorithms for
Minimizing the Total Weighted Completion Time

of Precedence-Constrained Jobs
Sven Jäger Philipp Warode

Symposium on Simplicity of Algorithms | 08 January 2024 | Alexandria, Virginia

Precedence-Constrained Jobs

Jobs are nodes of a directed acyclic graph D = (N;A).

A job can only be processed when all its predecessors have been completed.
The problem is strongly NP-hard. (Lawler ’78)

wj = 1 wj = 2

wj = 1

wj = 1

wj = 1 wj = 2wj = 1 wj = 1

time
Cteal CvioletCblue Cgreen

total area =
X
j∈N

wjCj

optimal solution always
schedules initial set J with
maximum ratio w(J)=p(J)

wteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 4 / 18

Precedence-Constrained Jobs

Jobs are nodes of a directed acyclic graph D = (N;A).
A job can only be processed when all its predecessors have been completed.

The problem is strongly NP-hard. (Lawler ’78)

wj = 1 wj = 2

wj = 1

wj = 1

wj = 1 wj = 2wj = 1 wj = 1

time
Cteal CvioletCblue Cgreen

total area =
X
j∈N

wjCj

optimal solution always
schedules initial set J with
maximum ratio w(J)=p(J)

wteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 4 / 18

Precedence-Constrained Jobs

Jobs are nodes of a directed acyclic graph D = (N;A).
A job can only be processed when all its predecessors have been completed.

The problem is strongly NP-hard. (Lawler ’78)

wj = 1 wj = 2

wj = 1

wj = 1

wj = 1 wj = 2wj = 1 wj = 1

time
Cteal CvioletCblue Cgreen

total area =
X
j∈N

wjCj

optimal solution always
schedules initial set J with
maximum ratio w(J)=p(J)

wteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 4 / 18

Precedence-Constrained Jobs

Jobs are nodes of a directed acyclic graph D = (N;A).
A job can only be processed when all its predecessors have been completed.

The problem is strongly NP-hard. (Lawler ’78)

wj = 1 wj = 2

wj = 1

wj = 1

wj = 1 wj = 2wj = 1 wj = 1

time
Cteal CvioletCblue Cgreen

total area =
X
j∈N

wjCj

optimal solution always
schedules initial set J with
maximum ratio w(J)=p(J)

wteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 4 / 18

Precedence-Constrained Jobs

Jobs are nodes of a directed acyclic graph D = (N;A).
A job can only be processed when all its predecessors have been completed.

The problem is strongly NP-hard. (Lawler ’78)

wj = 1 wj = 2

wj = 1

wj = 1

wj = 1 wj = 2wj = 1 wj = 1

time
Cteal CvioletCblue Cgreen

total area =
X
j∈N

wjCj

optimal solution always
schedules initial set J with
maximum ratio w(J)=p(J)

wteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 4 / 18

Precedence-Constrained Jobs

Jobs are nodes of a directed acyclic graph D = (N;A).
A job can only be processed when all its predecessors have been completed.
The problem is strongly NP-hard. (Lawler ’78)

wj = 1 wj = 2

wj = 1

wj = 1

wj = 1 wj = 2wj = 1 wj = 1

time
Cteal CvioletCblue Cgreen

total area =
X
j∈N

wjCj

optimal solution always
schedules initial set J with
maximum ratio w(J)=p(J)

wteal

wgreen

wblue

wviolet

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 4 / 18

Simple Approximation Algorithms for
Minimizing the Total Weighted Completion Time

of Precedence-Constrained Jobs
Sven Jäger Philipp Warode

Symposium on Simplicity of Algorithms | 08 January 2024 | Alexandria, Virginia

Approximation Algorithms

Pisaruk ’92: 2-approximation algorithm for more general submodular ordering problem

Hall et al. ’97: 2-approximation algorithm based on LP relaxation with exponentially
many efficiently separable constraints
Chudak, Hochbaum ’99: Two 2-approximation algorithms based on LP relaxation with
only two variables in each constraint, which can be solved by min-cut computation
Chekuri, Motwani ’99; Margot et al. ’03; Pisaruk ’03: 2-approximation algorithm that
determines a Sidney decomposition and arbitrarily orders jobs in each block

Bansal, Khot ’09: Under a variant of the Unique Games Conjecture, not better guarantee
is possible.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 6 / 18

Approximation Algorithms

Pisaruk ’92: 2-approximation algorithm for more general submodular ordering problem
Hall et al. ’97: 2-approximation algorithm based on LP relaxation with exponentially
many efficiently separable constraints

Chudak, Hochbaum ’99: Two 2-approximation algorithms based on LP relaxation with
only two variables in each constraint, which can be solved by min-cut computation
Chekuri, Motwani ’99; Margot et al. ’03; Pisaruk ’03: 2-approximation algorithm that
determines a Sidney decomposition and arbitrarily orders jobs in each block

Bansal, Khot ’09: Under a variant of the Unique Games Conjecture, not better guarantee
is possible.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 6 / 18

Approximation Algorithms

Pisaruk ’92: 2-approximation algorithm for more general submodular ordering problem
Hall et al. ’97: 2-approximation algorithm based on LP relaxation with exponentially
many efficiently separable constraints
Chudak, Hochbaum ’99: Two 2-approximation algorithms based on LP relaxation with
only two variables in each constraint, which can be solved by min-cut computation

Chekuri, Motwani ’99; Margot et al. ’03; Pisaruk ’03: 2-approximation algorithm that
determines a Sidney decomposition and arbitrarily orders jobs in each block

Bansal, Khot ’09: Under a variant of the Unique Games Conjecture, not better guarantee
is possible.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 6 / 18

Approximation Algorithms

Pisaruk ’92: 2-approximation algorithm for more general submodular ordering problem
Hall et al. ’97: 2-approximation algorithm based on LP relaxation with exponentially
many efficiently separable constraints
Chudak, Hochbaum ’99: Two 2-approximation algorithms based on LP relaxation with
only two variables in each constraint, which can be solved by min-cut computation
Chekuri, Motwani ’99; Margot et al. ’03; Pisaruk ’03: 2-approximation algorithm that
determines a Sidney decomposition and arbitrarily orders jobs in each block

Bansal, Khot ’09: Under a variant of the Unique Games Conjecture, not better guarantee
is possible.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 6 / 18

Approximation Algorithms

Pisaruk ’92: 2-approximation algorithm for more general submodular ordering problem
Hall et al. ’97: 2-approximation algorithm based on LP relaxation with exponentially
many efficiently separable constraints
Chudak, Hochbaum ’99: Two 2-approximation algorithms based on LP relaxation with
only two variables in each constraint, which can be solved by min-cut computation
Chekuri, Motwani ’99; Margot et al. ’03; Pisaruk ’03: 2-approximation algorithm that
determines a Sidney decomposition and arbitrarily orders jobs in each block

Bansal, Khot ’09: Under a variant of the Unique Games Conjecture, not better guarantee
is possible.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 6 / 18

Approximation Algorithms via Sidney Decompoistion

Algorithm (2-Approximation).

1 Let U ← N, S← [].
2 While U ̸= ∅,
3 determine initial set J in D[U] with maximum ratio w(J)=p(J);
4 append jobs from J to schedule S in arbitrary topological order.

Analysis:

The algorithm computes a solution whose
objective value is at most twice the
optimum objective value.
The algorithm can be executed in
polynomial time.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 7 / 18

Approximation Algorithms via Sidney Decompoistion

Algorithm (2-Approximation).

1 Let U ← N, S← [].
2 While U ̸= ∅,
3 determine initial set J in D[U] with maximum ratio w(J)=p(J);
4 append jobs from J to schedule S in arbitrary topological order.

Analysis:
The algorithm computes a solution whose
objective value is at most twice the
optimum objective value.

The algorithm can be executed in
polynomial time.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 7 / 18

Approximation Algorithms via Sidney Decompoistion

Algorithm (2-Approximation).

1 Let U ← N, S← [].
2 While U ̸= ∅,
3 determine initial set J in D[U] with maximum ratio w(J)=p(J);
4 append jobs from J to schedule S in arbitrary topological order.

Analysis:
The algorithm computes a solution whose
objective value is at most twice the
optimum objective value.

The algorithm can be executed in
polynomial time.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 7 / 18

Approximation Algorithms via Sidney Decompoistion

Algorithm (2-Approximation).

1 Let U ← N, S← [].
2 While U ̸= ∅,
3 determine initial set J in D[U] with maximum ratio w(J)=p(J);
4 append jobs from J to schedule S in arbitrary topological order.

Analysis:
The algorithm computes a solution whose
objective value is at most twice the
optimum objective value.
The algorithm can be executed in
polynomial time.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 7 / 18

Approximation Algorithms via Sidney Decompoistion

Algorithm (2-Approximation).

1 Let U ← N, S← [].
2 While U ̸= ∅,
3 determine initial set J in D[U] with maximum ratio w(J)=p(J);
4 append jobs from J to schedule S in arbitrary topological order.

Analysis:
The algorithm computes a solution whose
objective value is at most twice the
optimum objective value.
The algorithm can be executed in
polynomial time.

Chekuri, Motwani ’99; Pisaruk ’03: Solve
multiple max-flow flow problems.
Margot et al. ’03: Solve a parametric
max-flow problem, using the algorithm of
Gallo et al. O(n3)

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 7 / 18

Simple Approximation Algorithms for
Minimizing the Total Weighted Completion Time

of Precedence-Constrained Jobs
Sven Jäger Philipp Warode

Symposium on Simplicity of Algorithms | 08 January 2024 | Alexandria, Virginia

Simple Approximation Algorithm Overview

Algorithm (Simple 2-Approximation).

1 Compute “virtual” fractional/preemptive schedule S.
2 Perform list scheduling in order of CS

j .

Analysis:

1
X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j

2
X
j∈N

wjC
ALG
j ≤

X
j∈N

wjC
S
j

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 9 / 18

Simple Approximation Algorithm Overview

Algorithm (Simple 2-Approximation).

1 Compute “virtual” fractional/preemptive schedule S.
2 Perform list scheduling in order of CS

j .

Analysis:

1
X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j

2
X
j∈N

wjC
ALG
j ≤

X
j∈N

wjC
S
j

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 9 / 18

Simple Approximation Algorithm Overview

Algorithm (Simple 2-Approximation).

1 Compute “virtual” fractional/preemptive schedule S.
2 Perform list scheduling in order of CS

j .

Analysis:

1
X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j

2
X
j∈N

wjC
ALG
j ≤

X
j∈N

wjC
S
j

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 9 / 18

Simple Approximation Algorithm Virtual Fractional Schedule

A fractional schedule S assigns to each available job j a processing rate RS
j (t) ∈ [0; 1] at

any time t ≥ 0 so that the sum of all processing rates never exceeds 1.

The processing time of j before time t is Y S
j (t) :=

R t
0 R

S
j (s) ds.

Algorithm (Fractional Schedule).
At the beginning and whenever a job
completes, do
1 let U be the set of unfinished jobs, and let
F ⊆ U be the jobs without predecessor;

2 for i ∈ F
3 let T (i) be the successors of i in U;
4 set U ← U \ T (i);
5 process each job i ∈ F at rate
Ri (t)←

P
j∈T (i) wjP
j∈U wj

.

wj = 1 wj = 2

wj = 1

wj = 1

Cteal CvioletCblue Cgreen

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 10 / 18

Simple Approximation Algorithm Virtual Fractional Schedule

A fractional schedule S assigns to each available job j a processing rate RS
j (t) ∈ [0; 1] at

any time t ≥ 0 so that the sum of all processing rates never exceeds 1.
The processing time of j before time t is Y S

j (t) :=
R t
0 R

S
j (s) ds.

Algorithm (Fractional Schedule).
At the beginning and whenever a job
completes, do
1 let U be the set of unfinished jobs, and let
F ⊆ U be the jobs without predecessor;

2 for i ∈ F
3 let T (i) be the successors of i in U;
4 set U ← U \ T (i);
5 process each job i ∈ F at rate
Ri (t)←

P
j∈T (i) wjP
j∈U wj

.

wj = 1 wj = 2

wj = 1

wj = 1

Cteal CvioletCblue Cgreen

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 10 / 18

Simple Approximation Algorithm Virtual Fractional Schedule

A fractional schedule S assigns to each available job j a processing rate RS
j (t) ∈ [0; 1] at

any time t ≥ 0 so that the sum of all processing rates never exceeds 1.
The processing time of j before time t is Y S

j (t) :=
R t
0 R

S
j (s) ds.

Algorithm (Fractional Schedule).
At the beginning and whenever a job
completes, do
1 let U be the set of unfinished jobs, and let
F ⊆ U be the jobs without predecessor;

2 for i ∈ F
3 let T (i) be the successors of i in U;
4 set U ← U \ T (i);
5 process each job i ∈ F at rate
Ri (t)←

P
j∈T (i) wjP
j∈U wj

.

wj = 1 wj = 2

wj = 1

wj = 1

Cteal CvioletCblue Cgreen

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 10 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:

For a single job, the algorithm computes
the optimal schedule.
Let n > 1, and assume w.l.o.g. that job 1
finishes first in S and that

P
j∈N wj = 1.

Consider instance I ′ remaining at CS
1 .

Removing the processed parts from OPT
yields feasible schedule OPT′ for I ′.
By induction, remaining part of S costs at
most twice as much as OPT′.

1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:

For a single job, the algorithm computes
the optimal schedule.
Let n > 1, and assume w.l.o.g. that job 1
finishes first in S and that

P
j∈N wj = 1.

Consider instance I ′ remaining at CS
1 .

Removing the processed parts from OPT
yields feasible schedule OPT′ for I ′.
By induction, remaining part of S costs at
most twice as much as OPT′.

1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
For a single job, the algorithm computes
the optimal schedule.

Let n > 1, and assume w.l.o.g. that job 1
finishes first in S and that

P
j∈N wj = 1.

Consider instance I ′ remaining at CS
1 .

Removing the processed parts from OPT
yields feasible schedule OPT′ for I ′.
By induction, remaining part of S costs at
most twice as much as OPT′.

1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
For a single job, the algorithm computes
the optimal schedule.
Let n > 1, and assume w.l.o.g. that job 1
finishes first in S and that

P
j∈N wj = 1.

Consider instance I ′ remaining at CS
1 .

Removing the processed parts from OPT
yields feasible schedule OPT′ for I ′.
By induction, remaining part of S costs at
most twice as much as OPT′.

1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
For a single job, the algorithm computes
the optimal schedule.
Let n > 1, and assume w.l.o.g. that job 1
finishes first in S and that

P
j∈N wj = 1.

Consider instance I ′ remaining at CS
1 .

Removing the processed parts from OPT
yields feasible schedule OPT′ for I ′.
By induction, remaining part of S costs at
most twice as much as OPT′.

1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
For a single job, the algorithm computes
the optimal schedule.
Let n > 1, and assume w.l.o.g. that job 1
finishes first in S and that

P
j∈N wj = 1.

Consider instance I ′ remaining at CS
1 .

Removing the processed parts from OPT
yields feasible schedule OPT′ for I ′.

By induction, remaining part of S costs at
most twice as much as OPT′.

1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
For a single job, the algorithm computes
the optimal schedule.
Let n > 1, and assume w.l.o.g. that job 1
finishes first in S and that

P
j∈N wj = 1.

Consider instance I ′ remaining at CS
1 .

Removing the processed parts from OPT
yields feasible schedule OPT′ for I ′.
By induction, remaining part of S costs at
most twice as much as OPT′.

1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
The upper red area is CS

1 · 1.

The lower red area isX
j∈N

Y S
j (C

S
1) ·

X
k:COPT

k ≥COPT
j

wk :

=
X
j∈F

CS
1 · w(T (j)) ·

X
k:COPT

k ≥COPT
j

wk

≥ CS
1 ·
X
j∈F

w(T (j)) ·
X

i∈F :COPT
i ≥COPT

j

w(T (i)) ≥ CS
1 ·

1

2

„X
i∈F

w(T (i))

«2
=
CS
1

2
:

1

CS
1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
The upper red area is CS

1 · 1.
The lower red area isX
j∈N

Y S
j (C

S
1) ·

X
k:COPT

k ≥COPT
j

wk :

=
X
j∈F

CS
1 · w(T (j)) ·

X
k:COPT

k ≥COPT
j

wk

≥ CS
1 ·
X
j∈F

w(T (j)) ·
X

i∈F :COPT
i ≥COPT

j

w(T (i)) ≥ CS
1 ·

1

2

„X
i∈F

w(T (i))

«2
=
CS
1

2
:

1

CS
1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
The upper red area is CS

1 · 1.
The lower red area isX
j∈N

Y S
j (C

S
1) ·

X
k:COPT

k ≥COPT
j

wk :

=
X
j∈F

CS
1 · w(T (j)) ·

X
k:COPT

k ≥COPT
j

wk

≥ CS
1 ·
X
j∈F

w(T (j)) ·
X

i∈F :COPT
i ≥COPT

j

w(T (i)) ≥ CS
1 ·

1

2

„X
i∈F

w(T (i))

«2
=
CS
1

2
:

1

CS
1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
The upper red area is CS

1 · 1.
The lower red area isX
j∈N

Y S
j (C

S
1) ·

X
k:COPT

k ≥COPT
j

wk :

=
X
j∈F

CS
1 · w(T (j)) ·

X
k:COPT

k ≥COPT
j

wk

≥ CS
1 ·
X
j∈F

w(T (j)) ·
X

i∈F :COPT
i ≥COPT

j

w(T (i))

≥ CS
1 ·

1

2

„X
i∈F

w(T (i))

«2
=
CS
1

2
:

1

CS
1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
The upper red area is CS

1 · 1.
The lower red area isX
j∈N

Y S
j (C

S
1) ·

X
k:COPT

k ≥COPT
j

wk :

=
X
j∈F

CS
1 · w(T (j)) ·

X
k:COPT

k ≥COPT
j

wk

≥ CS
1 ·
X
j∈F

w(T (j)) ·
X

i∈F :COPT
i ≥COPT

j

w(T (i)) ≥ CS
1 ·

1

2

„X
i∈F

w(T (i))

«2

=
CS
1

2
:

1

CS
1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:
The upper red area is CS

1 · 1.
The lower red area isX
j∈N

Y S
j (C

S
1) ·

X
k:COPT

k ≥COPT
j

wk :

=
X
j∈F

CS
1 · w(T (j)) ·

X
k:COPT

k ≥COPT
j

wk

≥ CS
1 ·
X
j∈F

w(T (j)) ·
X

i∈F :COPT
i ≥COPT

j

w(T (i)) ≥ CS
1 ·

1

2

„X
i∈F

w(T (i))

«2
=
CS
1

2
:

1

CS
1

1

1

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 11 / 18

Performance Guarantee for List Schedule

Lemma.X
j∈N

wjC
ALG
j ≤

X
j∈N

wjC
S
j :

Proof.

Assume that CS
1 ≤ · · · ≤ CS

n .
In the list schedule, we have
CALG
j =

Pj
k=1 pk for all j ∈ N.

In the fractional schedule, we havePj
k=1 pk ≤ CS

j for all j ∈ N.

1 2 3 4

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 12 / 18

Performance Guarantee for List Schedule

Lemma.X
j∈N

wjC
ALG
j ≤

X
j∈N

wjC
S
j :

Proof.
Assume that CS

1 ≤ · · · ≤ CS
n .

In the list schedule, we have
CALG
j =

Pj
k=1 pk for all j ∈ N.

In the fractional schedule, we havePj
k=1 pk ≤ CS

j for all j ∈ N.

1 2 3 4

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 12 / 18

Performance Guarantee for List Schedule

Lemma.X
j∈N

wjC
ALG
j ≤

X
j∈N

wjC
S
j :

Proof.
Assume that CS

1 ≤ · · · ≤ CS
n .

In the list schedule, we have
CALG
j =

Pj
k=1 pk for all j ∈ N.

In the fractional schedule, we havePj
k=1 pk ≤ CS

j for all j ∈ N.

1 2 3 4

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 12 / 18

Performance Guarantee for List Schedule

Lemma.X
j∈N

wjC
ALG
j ≤

X
j∈N

wjC
S
j :

Proof.
Assume that CS

1 ≤ · · · ≤ CS
n .

In the list schedule, we have
CALG
j =

Pj
k=1 pk for all j ∈ N.

In the fractional schedule, we havePj
k=1 pk ≤ CS

j for all j ∈ N.

1 2 3 4

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 12 / 18

Comments on the Algorithm

The algorithm runs in time O(n2).

The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)
The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18

Comments on the Algorithm

The algorithm runs in time O(n2).
The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)
The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18

Comments on the Algorithm

The algorithm runs in time O(n2).
The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)
The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18

Comments on the Algorithm

The algorithm runs in time O(n2).
The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)

The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18

Comments on the Algorithm

The algorithm runs in time O(n2).
The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)
The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18

Simple Approximation Algorithms for
Minimizing the Total Weighted Completion Time

of Precedence-Constrained Jobs
Sven Jäger Philipp Warode

Symposium on Simplicity of Algorithms | 08 January 2024 | Alexandria, Virginia

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.

The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),

1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were
6 for out-forest precedence constraints (Lassota et al. ’23),

8 for general precedence constraints (with release dates) (Jäger ’21).
No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were
6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were
6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.

Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were
6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18

Summary

1 There is a simple 2-competitive non-clairvoyant round-robin type algorithm for scheduling
precedence-constrained jobs on a single machine. This matches the lower bound for
non-clairvoyant scheduling.

2 There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines. This is based on a parametric flow computation.

3 Both algorithms attain the best known constant performance guarantee of any clairvoyant
approximation algorithm for the problem.

4 Their running times improve upon the running times of previously known approximation
algorithms.

Thank you!

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 16 / 18

Summary

1 There is a simple 2-competitive non-clairvoyant round-robin type algorithm for scheduling
precedence-constrained jobs on a single machine. This matches the lower bound for
non-clairvoyant scheduling.

2 There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines. This is based on a parametric flow computation.

3 Both algorithms attain the best known constant performance guarantee of any clairvoyant
approximation algorithm for the problem.

4 Their running times improve upon the running times of previously known approximation
algorithms.

Thank you!

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 16 / 18

Summary

1 There is a simple 2-competitive non-clairvoyant round-robin type algorithm for scheduling
precedence-constrained jobs on a single machine. This matches the lower bound for
non-clairvoyant scheduling.

2 There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines. This is based on a parametric flow computation.

3 Both algorithms attain the best known constant performance guarantee of any clairvoyant
approximation algorithm for the problem.

4 Their running times improve upon the running times of previously known approximation
algorithms.

Thank you!

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 16 / 18

Summary

1 There is a simple 2-competitive non-clairvoyant round-robin type algorithm for scheduling
precedence-constrained jobs on a single machine. This matches the lower bound for
non-clairvoyant scheduling.

2 There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines. This is based on a parametric flow computation.

3 Both algorithms attain the best known constant performance guarantee of any clairvoyant
approximation algorithm for the problem.

4 Their running times improve upon the running times of previously known approximation
algorithms.

Thank you!

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 16 / 18

Summary

1 There is a simple 2-competitive non-clairvoyant round-robin type algorithm for scheduling
precedence-constrained jobs on a single machine. This matches the lower bound for
non-clairvoyant scheduling.

2 There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines. This is based on a parametric flow computation.

3 Both algorithms attain the best known constant performance guarantee of any clairvoyant
approximation algorithm for the problem.

4 Their running times improve upon the running times of previously known approximation
algorithms.

Thank you!
Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 16 / 18

References I

Bansal, N., Khot, S. (2009). “Optimal Long Code Test with One Free Bit”. 50th Annu. IEEE Symp.
Found. Comput. Sci. (FOCS), pp. 453–462.
Chekuri, C., Motwani, R. (1999). “Precedence constrained scheduling to minimize sum of weighted
completion times on a single machine”. Discrete Appl. Math. 98(1-2), pp. 29–38.
Chudak, F. A., Hochbaum, D. S. (1999). “A half-integral linear programming relaxation for scheduling
precedence-constrained jobs on a single machine”. Oper. Res. Lett. 25(5), pp. 199–204.
Gallo, G., Grigoriadis, M. D., Tarjan, R. E. (1989). “A Fast Parametric Maximum Flow Algorithm and
Applications”. SIAM J. Comput. 18(1), pp. 30–55.
Hall, L. A., Schulz, A. S., Shmoys, D. B., Wein, J. (1997). “Scheduling to Minimize Average Completion
Time: Off-Line and On-Line Approximation Algorithms”. Math. Oper. Res. 22(3), pp. 513–544.
Jäger, S. J. (2021). “Approximation in deterministic and stochastic machine scheduling”. PhD thesis.
Technische Universität Berlin.
Lassota, A. A., Lindermayr, A., Megow, N., Schlöter, J. (2023–2023). “Minimalistic Predictions to
Schedule Jobs with Online Precedence Constraints”. Proc. 40th Int. Conf. Mach. Learn. (ICML),
pp. 18563–18583.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 17 / 18

http://dx.doi.org/10.1109/FOCS.2009.23
http://dx.doi.org/10.1016/S0166-218X(98)00143-7
http://dx.doi.org/10.1016/S0166-218X(98)00143-7
http://dx.doi.org/10.1016/s0167-6377(99)00056-5
http://dx.doi.org/10.1016/s0167-6377(99)00056-5
http://dx.doi.org/10.1137/0218003
http://dx.doi.org/10.1137/0218003
http://dx.doi.org/10.1287/moor.22.3.513
http://dx.doi.org/10.1287/moor.22.3.513
http://dx.doi.org/10.14279/DEPOSITONCE-12198
https://proceedings.mlr.press/v202/lassota23a.html
https://proceedings.mlr.press/v202/lassota23a.html

References II

Lawler, E. L. (1978). “Sequencing Jobs to Minimize Total Weighted Completion Time Subject to
Precedence Constraints”. In: Algorithmic Aspects of Combinatorics. Ed. by B. Alspach, P. Hell,
D. J. Miller. Annals of Discrete Mathematics 2. Elsevier, pp. 75–90.
Li, S. (2020). “Scheduling to Minimize Total Weighted Completion Time via Time-Indexed Linear
Programming Relaxations”. SIAM J. Comput. 49(4), FOCS17-409–FOCS17-440.
Margot, F., Queyranne, M., Wang, Y. (2003). “Decompositions, Network Flows, and a Precedence
Constrained Single-Machine Scheduling Problem”. Oper. Res. 51(6), pp. 981–992.
Motwani, R., Phillips, S., Torng, E. (1994). “Nonclairvoyant scheduling”. Theor. Comput. Sci. 130(1),
pp. 17–47.
Pisaruk, N. N. (1992). “The boundaries of submodular functions”. Comput. Math. Math. Phys. 32(12),
pp. 1769–1783.
Pisaruk, N. N. (2003). “A fully combinatorial 2-approximation algorithm for precedence-constrained
scheduling a single machine to minimize average weighted completion time”. Discrete Appl. Math. 131(3),
pp. 655–663.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 18 / 18

http://dx.doi.org/10.1016/S0167-5060(08)70323-6
http://dx.doi.org/10.1016/S0167-5060(08)70323-6
http://dx.doi.org/10.1137/17M1156332
http://dx.doi.org/10.1137/17M1156332
http://dx.doi.org/10.1287/opre.51.6.981.24912
http://dx.doi.org/10.1287/opre.51.6.981.24912
http://dx.doi.org/10.1016/0304-3975(94)90151-1
https://www.mathnet.ru/eng/zvmmf2794
http://dx.doi.org/10.1016/S0166-218X(03)00334-2
http://dx.doi.org/10.1016/S0166-218X(03)00334-2

Appendix

Extended Precedence Graph

1

1

1

2=3

1

1=3

6

1

5

1

7=9

1=3

1=9

1=9

0

A B Z

3 |

3

1 |

1

2=3 |

1

1=3 |

1

1 |

1

2=9 |

1=ı

2=9 |

1=ı

2=9 |

1=ı

10=9 |

5=ı

2=9 |

1=ı

1 |

6=ı

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 2 / 5

Extended Precedence Graph

1

1

1

2=3

1

1=3

6

1

5

1

7=9

1=3

1=9

1=9

0

A B Z

3 |

3

1 |

1

2=3 |

1

1=3 |

1

1 |

1

2=9 |

1=ı

2=9 |

1=ı

2=9 |

1=ı

10=9 |

5=ı

2=9 |

1=ı

1 |

6=ı

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 2 / 5

Extended Precedence Graph

1

1

1

2=3

1

1=3

6

1

5

1

7=9

1=3

1=9

1=9

0

A B Z

3 |

3

1 |

1

2=3 |

1

1=3 |

1

1 |

1

2=9 |

1=ı

2=9 |

1=ı

2=9 |

1=ı

10=9 |

5=ı

2=9 |

1=ı

1 |

6=ı

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 2 / 5

Rate Distribution for Identical Parallel Machines

Algorithm (Rate Distribution).

1 Let F be the unfinished jobs without unfinished predecessor.
2 If |F | ≤ m,
3 set Rj(t)← 1 for all j ∈ F ;

4 else
5 compute ı ← max

˘
ı > 0

˛̨
({A}; Vt \ {A}) is a minimum-capacity A-Z-cut

¯
,

and let x be a corresponding maximum A-Z-flow;
6 set Rj(t)← x(B;j) for all j ∈ F .

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 3 / 5

Rate Distribution for Identical Parallel Machines

Algorithm (Rate Distribution).

1 Let F be the unfinished jobs without unfinished predecessor.
2 If |F | ≤ m,
3 set Rj(t)← 1 for all j ∈ F ;
4 else
5 compute ı ← max

˘
ı > 0

˛̨
({A}; Vt \ {A}) is a minimum-capacity A-Z-cut

¯
,

and let x be a corresponding maximum A-Z-flow;
6 set Rj(t)← x(B;j) for all j ∈ F .

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 3 / 5

Rate Distribution for Identical Parallel Machines

1

1

1

2=3

1

1=3

6

1

5

1

7=9

1=3

1=9

1=9

0

A B Z

3 |

3

1 |

1

2=3 |

1

1=3 |

1

1 |

1

2=9 |

1=ı

2=9 |

1=ı

2=9 |

1=ı

10=9 |

5=ı

2=9 |

1=ı

1 |

6=ı

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 4 / 5

Rate Distribution for Identical Parallel Machines

1

1

1

2=3

1

1=3

6

1

5

1

7=9

1=3

1=9

1=9

0

A B Z
3 | 3

1 |
1

2=3 | 1

1=3 | 1
1 | 1

2=9 | 2=9

2=9 | 2=9

2=9 | 2=9

10=9 | 10=9

2=9 | 2=9

1 | 4=
3

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 4 / 5

Rate Distribution for Identical Parallel Machines

1

1

1

2=3

1

1=3

6

1

5

1

7=9

1=3

1=9

1=9

0

A B Z
3 | 3

1 |
1

2=3 | 1

1=3 | 1
1 | 1

2=9 | 2=9

2=9 | 2=9

2=9 | 2=9

10=9 | 10=9

2=9 | 2=9

1 | 4=
3

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 4 / 5

Submodular Ordering Problem

For a permutation ı : [n]→ [n] and i ∈ [n] let ı[i] := {ı(1); : : : ; ı(i)}.

Submodular Ordering Problem
Given: non-increasing submodular function f : 2[n] → R and non-decreasing submodular

function g : 2[n] → R;
Task: find a permutation ı : [n]→ [n] such that

Pn
i=1 f (ı[i]) ·

`
g(ı[i])− g(ı[i − 1])

´
is minimized.

Minimizing the Total Weighted Completion Time of Precedence-Constrained Jobs
f (J) :=

P
j∈N\J wj

g(J) :=
P

j∈pred(J) pj

An optimal permutation is consistent with the precedence constraints.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 5 / 5

	References
	Appendix

