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Minimizing the Total Weighted Completion Time
Given: set N of n jobs with processing times pj > 0 and weights wj > 0;

Task: schedule the jobs on a single machine so that the sum of weighted
completion times

P
j∈J wjCj is minimized.
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Precedence-Constrained Jobs

Jobs are nodes of a directed acyclic graph D = (N;A).

A job can only be processed when all its predecessors have been completed.
The problem is strongly NP-hard. (Lawler ’78)
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Approximation Algorithms

Pisaruk ’92: 2-approximation algorithm for more general submodular ordering problem

Hall et al. ’97: 2-approximation algorithm based on LP relaxation with exponentially
many efficiently separable constraints
Chudak, Hochbaum ’99: Two 2-approximation algorithms based on LP relaxation with
only two variables in each constraint, which can be solved by min-cut computation
Chekuri, Motwani ’99; Margot et al. ’03; Pisaruk ’03: 2-approximation algorithm that
determines a Sidney decomposition and arbitrarily orders jobs in each block

Bansal, Khot ’09: Under a variant of the Unique Games Conjecture, not better guarantee
is possible.
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Approximation Algorithms via Sidney Decompoistion

Algorithm (2-Approximation).

1 Let U ← N, S← [ ].
2 While U ̸= ∅,
3 determine initial set J in D[U] with maximum ratio w(J)=p(J);
4 append jobs from J to schedule S in arbitrary topological order.

Analysis:

The algorithm computes a solution whose
objective value is at most twice the
optimum objective value.
The algorithm can be executed in
polynomial time.
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2 While U ̸= ∅,
3 determine initial set J in D[U] with maximum ratio w(J)=p(J);
4 append jobs from J to schedule S in arbitrary topological order.

Analysis:
The algorithm computes a solution whose
objective value is at most twice the
optimum objective value.
The algorithm can be executed in
polynomial time.

Chekuri, Motwani ’99; Pisaruk ’03: Solve
multiple max-flow flow problems.
Margot et al. ’03: Solve a parametric
max-flow problem, using the algorithm of
Gallo et al.  O(n3)
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Simple Approximation Algorithm Overview

Algorithm (Simple 2-Approximation).

1 Compute “virtual” fractional/preemptive schedule S.
2 Perform list scheduling in order of CS

j .

Analysis:

1
X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j

2
X
j∈N

wjC
ALG
j ≤

X
j∈N

wjC
S
j
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Simple Approximation Algorithm Virtual Fractional Schedule

A fractional schedule S assigns to each available job j a processing rate RS
j (t) ∈ [0; 1] at

any time t ≥ 0 so that the sum of all processing rates never exceeds 1.

The processing time of j before time t is Y S
j (t) :=

R t
0 R

S
j (s) ds.

Algorithm (Fractional Schedule).
At the beginning and whenever a job
completes, do
1 let U be the set of unfinished jobs, and let
F ⊆ U be the jobs without predecessor;

2 for i ∈ F
3 let T (i) be the successors of i in U;
4 set U ← U \ T (i);
5 process each job i ∈ F at rate
Ri (t)←

P
j∈T (i) wjP
j∈U wj

.

wj = 1 wj = 2

wj = 1

wj = 1
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Performance Guarantee for Virtual Fractional Schedule
Theorem 3.1.X
j∈N

wjC
S
j ≤ 2 ·

X
j∈N

wjC
OPT
j :

Proof. Induction on n := |N|:

For a single job, the algorithm computes
the optimal schedule.
Let n > 1, and assume w.l.o.g. that job 1
finishes first in S and that

P
j∈N wj = 1.

Consider instance I ′ remaining at CS
1 .

Removing the processed parts from OPT
yields feasible schedule OPT′ for I ′.
By induction, remaining part of S costs at
most twice as much as OPT′.

1

1

1
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Performance Guarantee for List Schedule

Lemma.X
j∈N

wjC
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Proof.

Assume that CS
1 ≤ · · · ≤ CS

n .
In the list schedule, we have
CALG
j =

Pj
k=1 pk for all j ∈ N.

In the fractional schedule, we havePj
k=1 pk ≤ CS

j for all j ∈ N.

1 2 3 4
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Comments on the Algorithm

The algorithm runs in time O(n2).

The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)
The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18



Comments on the Algorithm

The algorithm runs in time O(n2).
The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)
The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18



Comments on the Algorithm

The algorithm runs in time O(n2).
The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)
The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18



Comments on the Algorithm

The algorithm runs in time O(n2).
The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)

The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18



Comments on the Algorithm

The algorithm runs in time O(n2).
The computation of the preemptive schedule S is non-clairvoyant.

Corollary.
There is a 2-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on a single machine.

No better non-clairvoyant algorithm is possible. (Motwani et al. ’94)
The best previously known competitive ratios were

4 for out-forest precedence constraints (Lassota et al. ’23) and
8 for general precedence constraints (on identical machines with release dates) (Jäger ’21).

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 13 / 18



Simple Approximation Algorithms for
Minimizing the Total Weighted Completion Time

of Precedence-Constrained Jobs
Sven Jäger Philipp Warode

Symposium on Simplicity of Algorithms | 08 January 2024 | Alexandria, Virginia



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.

The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),

1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were

6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were
6 for out-forest precedence constraints (Lassota et al. ’23),

8 for general precedence constraints (with release dates) (Jäger ’21).
No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were
6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were
6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.

Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Identical Parallel Machines

Theorem.
There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines.

The algorithm is based on a parametric max-flow computation.
The performance guarantee of the best known (clairvoyant) approximation algorithms are

3− 1=m for arbitrary jobs (Hall et al. ’97),
1 +
√
2 for unit processing time jobs (Li ’20).

The best previously known competitive ratios of non-clairvoyant algorithms were
6 for out-forest precedence constraints (Lassota et al. ’23),
8 for general precedence constraints (with release dates) (Jäger ’21).

No lower bound above 2 is known.
Our algorithm cannot be made non-preemptive without impairing the performance
guarantee.

Symposium on Simplicity of Algorithms | 08/01/2024 | Sven Jäger, Philipp Warode | 15 / 18



Summary

1 There is a simple 2-competitive non-clairvoyant round-robin type algorithm for scheduling
precedence-constrained jobs on a single machine. This matches the lower bound for
non-clairvoyant scheduling.

2 There is a 3-competitive non-clairvoyant algorithm for preemptive precedence-constrained
scheduling on identical parallel machines. This is based on a parametric flow computation.

3 Both algorithms attain the best known constant performance guarantee of any clairvoyant
approximation algorithm for the problem.

4 Their running times improve upon the running times of previously known approximation
algorithms.

Thank you!
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Rate Distribution for Identical Parallel Machines

Algorithm (Rate Distribution).

1 Let F be the unfinished jobs without unfinished predecessor.
2 If |F | ≤ m,
3 set Rj(t)← 1 for all j ∈ F ;

4 else
5 compute ı ← max

˘
ı > 0

˛̨
({A}; Vt \ {A}) is a minimum-capacity A-Z-cut

¯
,

and let x be a corresponding maximum A-Z-flow;
6 set Rj(t)← x(B;j) for all j ∈ F .
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Submodular Ordering Problem

For a permutation ı : [n]→ [n] and i ∈ [n] let ı[i ] := {ı(1); : : : ; ı(i)}.

Submodular Ordering Problem
Given: non-increasing submodular function f : 2[n] → R and non-decreasing submodular

function g : 2[n] → R;
Task: find a permutation ı : [n]→ [n] such that

Pn
i=1 f (ı[i ]) ·

`
g(ı[i ])− g(ı[i − 1])

´
is minimized.

Minimizing the Total Weighted Completion Time of Precedence-Constrained Jobs
f (J) :=

P
j∈N\J wj

g(J) :=
P

j∈pred(J) pj

An optimal permutation is consistent with the precedence constraints.
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